Financial Bubble Detection Using GSADF and LSTM-RNN Model: Evidence from Emerging Markets

Main Article Content

Tran Trong Huynh, Bui Thanh Khoa

Abstract

Forecasting financial bubbles is a crucial task in financial economics due to the disruptive impact of asset price collapses on markets and economic stability. This study proposes a novel approach to bubble prediction by integrating the PSY (Phillips, Shi, and Yu) procedure for bubble detection with Long Short-Term Memory Recurrent Neural Networks (LSTM-RNN), a machine learning technique well-suited for modeling nonlinear time-series patterns. Using weekly data from the Vietnamese stock market covering the period from 2015 to 2025, we construct a binary dependent variable indicating the presence of bubble episodes based on the GSADF test. Key macro-financial variables, including returns, volatility, and geopolitical risk, are employed as predictors. The LSTM-RNN model is trained and validated using a time-split approach (2015–2019 for training, 2020–2022 for validation, and 2023–2025 for testing), ensuring robustness and preventing overfitting. Out-of-sample results demonstrate that the LSTM-RNN achieves a high accuracy of over 81% and significantly outperforms a random walk benchmark. Our findings highlight the critical role of macroeconomic uncertainty, especially geopolitical risk, in driving bubble dynamics. This research contributes to the literature by offering an early warning framework that combines econometric detection with advanced machine learning, supporting better decision-making for investors and financial regulators in emerging markets.

Article Details

References

  1. T. Hirano, A.A. Toda, Bubble Economics, J. Math. Econ. 111 (2024), 102944. https://doi.org/10.1016/j.jmateco.2024.102944.
  2. Y. Wang, T. Yampaka, Predicting Stock Price Bubbles in China Using Machine Learning, Int. J. Adv. Comput. Sci. Appl. 15 (2024), 415-425. https://doi.org/10.14569/ijacsa.2024.0151139.
  3. K.L. Tran, H.A. Le, C.P. Lieu, D.T. Nguyen, Machine Learning to Forecast Financial Bubbles in Stock Markets: Evidence From Vietnam, Int. J. Financ. Stud. 11 (2023), 133. https://doi.org/10.3390/ijfs11040133.
  4. P.C.B. Phillips, S. Shi, J. Yu, Testing for Multiple Bubbles: Limit Theory of Real‐time Detectors, Int. Econ. Rev. 56 (2015), 1079-1134. https://doi.org/10.1111/iere.12131.
  5. L. Alessi, C. Detken, Identifying Excessive Credit Growth and Leverage, J. Financ. Stab. 35 (2018), 215-225. https://doi.org/10.1016/j.jfs.2017.06.005.
  6. Z. Ouyang, X. Yang, Y. Lai, Systemic Financial Risk Early Warning of Financial Market in China Using Attention-lstm Model, North Am. J. Econ. Financ. 56 (2021), 101383. https://doi.org/10.1016/j.najef.2021.101383.
  7. A. Fuster, P. Goldsmith‐Pinkham, T. Ramadorai, A. Walther, Predictably Unequal? The Effects of Machine Learning on Credit Markets, J. Financ. 77 (2021), 5-47. https://doi.org/10.1111/jofi.13090.
  8. B.T. Khoa, T.T. Huynh, The Value Premium and Uncertainty: an Approach by Support Vector Regression Algorithm, Cogent Econ. Financ. 11 (2023), 2191459. https://doi.org/10.1080/23322039.2023.2191459.
  9. F. Başoğlu Kabran, K.D. Ünlü, A Two-step Machine Learning Approach to Predict S&P 500 Bubbles, J. Appl. Stat. 48 (2020), 2776--2794. https://doi.org/10.1080/02664763.2020.1823947.
  10. R.J. Shiller, Bubbles, Human Judgment, and Expert Opinion, Financ. Anal. J. 58 (2002), 18-26. https://doi.org/10.2469/faj.v58.n3.2535.
  11. T.E. Caravello, Z. Psaradakis, M. Sola, Rational Bubbles: Too Many to Be True?, J. Econ. Dyn. Control. 151 (2023), 104666. https://doi.org/10.1016/j.jedc.2023.104666.
  12. E.F. Fama, Two Pillars of Asset Pricing, Am. Econ. Rev. 104 (2014), 1467-1485. https://doi.org/10.1257/aer.104.6.1467.
  13. G. Cerruti, S. Lombardini, Financial Bubbles as a Recursive Process Lead by Short-term Strategies, Int. Rev. Econ. Financ. 82 (2022), 555-568. https://doi.org/10.1016/j.iref.2022.07.011.
  14. P.C.B. Phillips, S. Shi, J. Yu, Testing for Multiple Bubbles: Historical Episodes of Exuberance and Collapse in the S&p 500, Int. Econ. Rev. 56 (2015), 1043-1078. https://doi.org/10.1111/iere.12132.
  15. X. Zhang, C. Wei, C. Lee, Y. Tian, Systemic Risk of Chinese Financial Institutions and Asset Price Bubbles, North Am. J. Econ. Financ. 64 (2023), 101880. https://doi.org/10.1016/j.najef.2023.101880.
  16. P.C.B. Phillips, Y. Wu, J. Yu, Explosive Behavior in the 1990s Nasdaq: When Did Exuberance Escalate Asset Values?, Int. Econ. Rev. 52 (2011), 201-226. https://doi.org/10.1111/j.1468-2354.2010.00625.x.
  17. A. Dasilas, A. Rigani, Machine Learning Techniques in Bankruptcy Prediction: a Systematic Literature Review, Expert Syst. Appl. 255 (2024), 124761. https://doi.org/10.1016/j.eswa.2024.124761.
  18. D. Kuizinienė, T. Krilavičius, R. Damaševičius, R. Maskeliūnas, Systematic Review of Financial Distress Identification Using Artificial Intelligence Methods, Appl. Artif. Intell. 36 (2022), 2138124. https://doi.org/10.1080/08839514.2022.2138124.
  19. B.T. Khoa, T.T. Huynh, L.D. Thang, Effectiveness of Ols and Svr in Return Prediction: Fama-french Three-factor Model and Capm Framework, Ind. Eng. Manag. Syst. 22 (2023), 73-84. https://doi.org/10.7232/iems.2023.22.1.073.
  20. S. Gu, B. Kelly, D. Xiu, Empirical Asset Pricing Via Machine Learning, Rev. Financ. Stud. 33 (2020), 2223-2273. https://doi.org/10.1093/rfs/hhaa009.
  21. X. Zhou, H. Zhou, H. Long, Forecasting the Equity Premium: Do Deep Neural Network Models Work?, Mod. Financ. 1 (2023), 1-11. https://doi.org/10.61351/mf.v1i1.2.
  22. X. Wei, L. Zhang, H. Yang, L. Zhang, Y. Yao, Machine Learning for Pore-water Pressure Time-series Prediction: Application of Recurrent Neural Networks, Geosci. Front. 12 (2021), 453-467. https://doi.org/10.1016/j.gsf.2020.04.011.