Application of the Fourth-Order Differential Subordination and Superordination Results for Analytic Functions Associated With an Operator
Main Article Content
Abstract
This study focuses on differential subordination using arithmetic and geometric approaches when the dominant function is linear. In addition to the results of differential subordination of arithmetic and geometric means in which a convex function was dominant, one can study such differential subordination for a selected convex function. We investigate several results of the differential subordinations of analytic functions are associated with an operator built using arithmetic and geometric means.
Article Details
References
- R.M. Ali, V. Ravichandran, N. Seenivasagan, Differential Subordination and Superordination of Analytic Functions Defined by the Multiplier Transformation, Math. Inequal. Appl. 12 (2009), 123–139. https://doi.org/10.7153/mia-12-11.
- R.M. Ali, V. Ravichandran, N. Seenivasagan, Differential Subordination and Superordination of Analytic Functions Defined by the Dziok–srivastava Linear Operator, J. Frankl. Inst. 347 (2010), 1762–1781. https://doi.org/10.1016/j.jfranklin.2010.08.009.
- J.A. Antonino, S.S. Miller, Third-order Differential Inequalities and Subordinations in the Complex Plane, Complex Var. Elliptic Equ. 56 (2011), 439–454. https://doi.org/10.1080/17476931003728404.
- W.G. Atshan, A.A.R. Ali, On Some Sandwich Theorems of Analytic Functions Involving Noor-Salagean Operator, Adv. Math.: Sci. J. 9 (2020), 8455–8467. https://doi.org/10.37418/amsj.9.10.74.
- W.G. Atshan, A.A.R. Ali, On Sandwich Theorems Results for Certain Univalent Functions Defined by Generalized Operators, Iraqi J. Sci. 62 (2021), 2376–2383. https://doi.org/10.24996/ijs.2021.62.7.27.
- W.G. Atshan, A.H. Battor, A.F. Abaas, G.I. Oros, New and Extended Results on Fourth-Order Differential Subordinationfor Univalent Analytic Functions, Al-Qadisiyah J. Pure Sci. 25 (2020), 1–13. https://doi.org/10.29350/2411-3514.1190.
- W.G. Atshan, I.A. Abbas, S. Yalcin, New Concept on Fourth-Order Differential Subordination and Superordination with Some Results for Multivalent Analytic Functions, J. Al-Qadisiyah Comput. Sci. Math. 12 (2020), 96–107. https://doi.org/10.29304/jqcm.2020.12.1.681.
- W.G. Atshan, R.A. Hadi, Some Differential Subordination and Superordination Results of P-Valent Functions Defined by Differential Operator, J. Phys.: Conf. Ser. 1664 (2020), 012043. https://doi.org/10.1088/1742-6596/1664/1/012043.
- Á. Baricz, Generalized Bessel Functions of the First Kind, Springer, Berlin, Heidelberg, 2010. https://doi.org/10.1007/978-3-642-12230-9.
- Á. Baricz, E. Deniz, M. Ça ˘glar, H. Orhan, Differential Subordinations Involving Generalized Bessel Functions, Bull. Malays. Math. Sci. Soc. 38 (2014), 1255–1280. https://doi.org/10.1007/s40840-014-0079-8.
- Á. Baricz, S. Ponnusamy, Starlikeness and Convexity of Generalized Bessel Functions, Integral Transform. Spec. Funct. 21 (2010), 641–653. https://doi.org/10.1080/10652460903516736.
- B.C. Carlson, D.B. Shaffer, Starlike and Prestarlike Hypergeometric Functions, SIAM J. Math. Anal. 15 (1984), 737–745. https://doi.org/10.1137/0515057.
- N.E. Cho, O.S. Kwon, S. Owa, H. Srivastava, A Class of Integral Operators Preserving Subordination and Superordination for Meromorphic Functions, Appl. Math. Comput. 193 (2007), 463–474. https://doi.org/10.1016/j.amc.2007.03.084.
- N. Eun Cho, H.M. Srivastava, A Class of Nonlinear Integral Operators Preserving Subordination and Superordination, Integral Transform. Spec. Funct. 18 (2007), 95–107. https://doi.org/10.1080/10652460601135342.
- E. Deniz, Convexity of Integral Operators Involving Generalized Bessel Functions, Integral Transform. Spec. Funct. 24 (2013), 201–216. https://doi.org/10.1080/10652469.2012.685938.
- E. Erhan, H. Orhan, H.M. Srivastava, Some Sufficient Conditions for Univalence of Certain Families of Integral Operators Involving Generalized Bessel Functions, Taiwan. J. Math. 15 (2011), 883–917. https://doi.org/10.11650/twjm/1500406240.
- B.K. Mihsin, W.G. Atshan, S.S. Alhily, A.A. Lupa¸s, New Results on Fourth-Order Differential Subordination and Superordination for Univalent Analytic Functions Involving a Linear Operator, Symmetry 14 (2022), 324. https://doi.org/10.3390/sym14020324.
- H.A. Farzana, B.A. Stephen, M.P. Jeyaraman, Third Order Differential Subordination of Analytic Function Defined by Fractional Derivative Operator, Ann. Alexandru Ioan Cuza Univ. - Math. 62 (2016), 105–120. https://doi.org/10.2478/aicu-2014-0028.
- S. Mandal, M.M. Soren, Fourth-Order Differential Subordination Results for Analytic Functions Involving the Generalized Bessel Functions, TWMS J. Appl. Eng. Math. 15 (2025), 1245–1258.
- S.S. Miller, P.T. Mocanu, Differential Subordinations: Theory and Applications, CRC Press, 2000. https://doi.org/10.1201/9781482289817.
- S.S. Miller, P.T. Mocanu, Differential Subordinations and Univalent Functions, Michigan Math. J. 28 (1981), 157–172.
- S.S. Miller, P.T. Mocanu, Subordinants of Differential Superordinations, Complex Var. Theory Appl.: Int. J. 48 (2003), 815–826. https://doi.org/10.1080/02781070310001599322.
- S. Ponnusamy, O.P. Juneja, Third-Order Differential Inequalities in the Complex Plane, in: Current Topics in Analytic Function Theory, World Scientific, 1992: pp. 274–290. https://doi.org/10.1142/9789814355896_0023.
- D. R ˘aducanu, Third-order Differential Subordinations for Analytic Functions Associated with Generalized MittagLeffler Functions, Mediterr. J. Math. 14 (2017), 167. https://doi.org/10.1007/s00009-017-0969-8.
- T.N. Shanmugam, S. Sivasubramanian, H.M. Srivastava, Differential Sandwich Theorems for Certain Subclasses of Analytic Functions Involving Multiplier Transformations, Integral Transform. Spec. Funct. 17 (2006), 889–899. https://doi.org/10.1080/10652460600926915.
- H. Tang, H.M. Srivastava, E. Deniz, S. Li, Third-order Differential Superordination Involving the Generalized Bessel Functions, Bull. Malays. Math. Sci. Soc. 38 (2014), 1669–1688. https://doi.org/10.1007/s40840-014-0108-7.
- H. Tang, E. Deniz, Third-order Differential Subordination Results for Analytic Functions Involving the Generalized Bessel Functions, Acta Math. Sci. 34 (2014), 1707–1719. https://doi.org/10.1016/s0252-9602(14)60116-8.