Hyers-Ulam Stability of Fractional Differential Equations Using West Nile Virus

Main Article Content

S. Dhivya, Vediyappan Govindan, Siriluk Donganont

Abstract

In this paper, we use the Atangana-Baleanu Caputo derivative to design and assess a fractional-order infection model for West Nile virus. The model offers insights into the evolution of the virus and takes into account its intricate dynamics of transmission. We investigate the system’s qualitative behavior and prove existence and uniqueness findings using fixed-point theory. Additionally, we examine the suggested model’s stability in terms of Hyers-Ulam stability. Euler’s approach for the Atangana-Baleanu integral is used to numerically simulate the fractional-order model in order to visualize the effects of different parameters. The theoretical findings are verified, and the impact of fractional-order derivatives on the dynamics of the system is demonstrated using MATLAB. The study emphasizes the use of fractional calculus in epidemiological modeling, which offers a more realistic depiction of the spread of illness in the actual world.

Article Details

References

  1. S. Abbas, M. Nazar, S.F.F. Gillani, M. Naveed, M. Ahmad, Z.U. Nisa, A CPC Fractional Model of the Heat and Mass Transport Mechanism in Carbon Nanotubes with Slip Effects on Velocity, Mod. Phys. Lett. B 38 (2023), 2450100. https://doi.org/10.1142/s0217984924501008.
  2. S. Abbas, M. Ahmad, M. Nazar, M. Amjad, H. Ali, A.Z. Jan, Heat and Mass Transfer Through a Vertical Channel for the Brinkman Fluid Using Prabhakar Fractional Derivative, Appl. Therm. Eng. 232 (2023), 121065. https://doi.org/10.1016/j.applthermaleng.2023.121065. .
  3. P. Agarwal, R. Singh, Modelling of Transmission Dynamics of Nipah Virus (NIV): A Fractional Order Approach, Physica: Stat. Mech. Appl. 547 (2020), 124243. https://doi.org/10.1016/j.physa.2020.124243.
  4. B.S.T. Alkahtani, Chua’s Circuit Model with Atangana–baleanu Derivative with Fractional Order, Chaos Solitons Fractals 89 (2016), 547–551. https://doi.org/10.1016/j.chaos.2016.03.020.
  5. D. Baleanu, A. Jajarmi, M. Hajipour, On the Nonlinear Dynamical Systems Within the Generalized Fractional Derivatives with Mittag–leffler Kernel, Nonlinear Dyn. 94 (2018), 397–414. https://doi.org/10.1007/s11071-018-4367-y.
  6. C. Bowman, A. Gumel, P. Vandendriessche, J. Wu, H. Zhu, A Mathematical Model for Assessing Control Strategies Against West Nile Virus, Bull. Math. Biol. 67 (2005), 1107–1133. https://doi.org/10.1016/j.bulm.2005.01.002.
  7. G. Cai, J. Huang, S.X. Yang, An Optimal Control Method for Linear Systems with Time Delay, Comput. Struct. 81 (2003), 1539–1546. https://doi.org/10.1016/s0045-7949(03)00146-9.
  8. B. Chen, S. Wang, H. Lu, Stabilization of Time-Delay Systems Containing Saturating Actuators, Int. J. Control. 47 (1988), 867–881. https://doi.org/10.1080/00207178808906058.
  9. Chyung, D.H., Lee, E.B.: Linear optimal systems with time-delay. SIAM J. Control 4(3), 548–575 (1966)
  10. S. Dadebo, R. Luus, Optimal Control of Time-delay Systems by Dynamic Programming, Optim. Control. Appl. Methods 13 (1992), 29–41. https://doi.org/10.1002/oca.4660130103.
  11. F. Evirgen, Transmission of Nipah Virus Dynamics Under Caputo Fractional Derivative, J. Comput. Appl. Math. 418 (2023), 114654. https://doi.org/10.1016/j.cam.2022.114654.
  12. E. Fesce, G. Marini, R. Rosà, D. Lelli, M.P. Cerioli, M. Chiari, M. Farioli, N. Ferrari, Understanding West Nile Virus Transmission: Mathematical Modelling to Quantify the Most Critical Parameters to Predict Infection Dynamics, PLOS Neglected Trop. Dis. 17 (2023), e0010252. https://doi.org/10.1371/journal.pntd.0010252.
  13. G. Cruzpacheco, L. Esteva, J. Montanohirose, C. Vargas, Modelling the Dynamics of West Nile Virus, Bull. Math. Biol. 67 (2005), 1157–1172. https://doi.org/10.1016/j.bulm.2004.11.008.
  14. C.G. HAYES, West Nile Virus: Uganda, 1937, to New York City, 1999, Ann. N. Y. Acad. Sci. 951 (2001), 25–37. https://doi.org/10.1111/j.1749-6632.2001.tb02682.x.
  15. J. Singh, D. Kumar, D. Baleanu, On the Analysis of Chemical Kinetics System Pertaining to a Fractional Derivative with Mittag-Leffler Type Kernel, Chaos 27 (2017), 103113. https://doi.org/10.1063/1.4995032.
  16. I. Koca, Modelling the Spread of Ebola Virus with Atangana-Baleanu Fractional Operators, Eur. Phys. J. Plus 133 (2018), 100. https://doi.org/10.1140/epjp/i2018-11949-4.
  17. R.S. Lanciotti, J.T. Roehrig, V. Deubel, J. Smith, M. Parker, et al. Origin of the West Nile Virus Responsible for an Outbreak of Encephalitis in the Northeastern United States, Science 286 (1999), 2333–2337. https://doi.org/10.1126/science.286.5448.2333.
  18. T.N. LEE, U.L. RADOVIC, General Decentralized Stabilization of Large-Scale Linear Continuous and Discrete Time-Delay Systems, Int. J. Control. 46 (1987), 2127–2140. https://doi.org/10.1080/00207178708934039.
  19. R. Luus, X. Zhang, F. Hartig, F.J. Keil, Use of Piecewise Linear Continuous Optimal Control for Time-Delay Systems, Ind. Eng. Chem. Res. 34 (1995), 4136–4139. https://doi.org/10.1021/ie00038a060.
  20. M.K. Mondal, M. Hanif, M.H.A. Biswas, A Mathematical Analysis for Controlling the Spread of Nipah Virus Infection, Int. J. Model. Simul. 37 (2017), 185–197. https://doi.org/10.1080/02286203.2017.1320820.
  21. E. Raeisi, M. Yavuz, M. Khosravifarsani, Y. Fadaei, Mathematical Modeling of Interactions Between Colon Cancer and Immune System with a Deep Learning Algorithm, Eur. Phys. J. Plus 139 (2024), 345. https://doi.org/10.1140/epjp/s13360-024-05111-4.
  22. J. Singh, D. Kumar, D. Baleanu, On the Analysis of Chemical Kinetics System Pertaining to a Fractional Derivative with Mittag-Leffler Type Kernel, Chaos 27 (2017), 103113. https://doi.org/10.1063/1.4995032.
  23. M. Syam, M. Al-Refai, Fractional Differential Equations with Atangana–baleanu Fractional Derivative: Analysis and Applications, Chaos Solitons Fractals: X 2 (2019), 100013. https://doi.org/10.1016/j.csfx.2019.100013.
  24. N.H. Sweilam, O.M. Saad, D.G. Mohamed, Fractional Optimal Control in Transmission Dynamics of West Nile Virus Model with State and Control Time Delay: A Numerical Approach, Adv. Differ. Equ. 2019 (2019), 210. https://doi.org/10.1186/s13662-019-2147-8.
  25. K.L. Teo, K.H. Wong, D.J. Clements, Optimal Control Computation for Linear Time-Lag Systems with Linear Terminal Constraints, J. Optim. Theory Appl. 44 (1984), 509–526. https://doi.org/10.1007/bf00935465.
  26. M.J. Turell, M. O’Guinn, J. Oliver, Potential for New York Mosquitoes to Transmit West Nile Virus, Am. J. Trop. Med. Hyg. 62 (2000), 413–414. https://doi.org/10.4269/ajtmh.2000.62.413.
  27. P. Veeresha, E. Ilhan, D. Prakasha, H.M. Baskonus, W. Gao, A New Numerical Investigation of Fractional Order Susceptible-Infected-Recovered Epidemic Model of Childhood Disease, Alex. Eng. J. 61 (2022), 1747–1756. https://doi.org/10.1016/j.aej.2021.07.015.
  28. K.H. Wong, D.J. Clements, K.L. Teo, Optimal Control Computation for Nonlinear Time-Lag Systems, J. Optim. Theory Appl. 47 (1985), 91–107. https://doi.org/10.1007/bf00941318.
  29. J. Yang, T. Soong, Recent Advances in Active Control of Civil Engineering Structures, Probab. Eng. Mech. 3 (1988), 179–188. https://doi.org/10.1016/0266-8920(88)90010-0.
  30. H.G. Zeller, I. Schuffenecker, West Nile Virus: an Overview of Its Spread in Europe and the Mediterranean Basin in Contrast to Its Spread in the Americas, Eur. J. Clin. Microbiol. Infect. Dis. 23 (2004), 147–156. https://doi.org/10.1007/s10096-003-1085-1.