Approximating Solutions of Resolvents of Monotone Operators and Convex Functions in Hadamard Spaces
Main Article Content
Abstract
In this paper, we study the products of finitely many resolvents of monotone operators and convex functions in the settings of Hadamard space. We propose an iterative method for finding products of finitely many resolvents of monotone operators, convex functions and fixed points of k-strictly pseudocontractive mappings. A strong convergence result of our proposed algorithm was established without imposing any strict conditions on our operators. We provide some consequences of our result and display a numerical example to illustrate the performance of our result. Our result complements and extends some related results in the literature.
Article Details
References
- H.A. Abass, P. Cholamjiak, C. Izuchukwu, L.O. Jolaoso, O.K. Narain, Convergence Analysis for Products of Resolvents of Convex Functions and Multivalued k-Strictly Pseudononspreading Mappings in Hadamard Spaces, Linear Nonlinear Anal. 8 (2022), 163–184.
- H.A. Abass, Linear Convergence of Alternating Inertial Tseng-Type Method for Solving Inclusion Problems on Hadamard Manifolds, Proc. Edinb. Math. Soc. 68 (2024), 463–486. https://doi.org/10.1017/s0013091524000543.
- H.A. Abass, A.A. Mebawondu, K.O. Aremu, O.K. Oyewole, Generalized Viscosity Approximation Method for Minimization and Fixed Point Problems of Quasi-Pseudocontractive Mappings in Hadamard Spaces, Asian-Eur. J. Math. 15 (2022), 2250188. https://doi.org/10.1142/s1793557122501881.
- K.O. Aremu, H. Abass, C. Izuchukwu, O.T. Mewomo, A Viscosity-Type Algorithm for an Infinitely Countable Family of (f, g)-Generalized k-Strictly Pseudononspreading Mappings in Cat(0) Spaces, Analysis 40 (2020), 19–37. https://doi.org/10.1515/anly-2018-0078.
- M. Bacak, The Proximal Point Algorithm in Metric Space, Isr. J.Math. 194 (2013), 689–701.
- I.D. Berg, I.G. Nikolaev, Quasilinearization and Curvature of Aleksandrov Spaces, Geom. Dedicata 133 (2008), 195–218. https://doi.org/10.1007/s10711-008-9243-3.
- P. Cholamjiak, The Modified Proximal Point Algorithm in Cat(0) Spaces, Optim. Lett. 9 (2014), 1401–1410. https://doi.org/10.1007/s11590-014-0841-8.
- G.Z. Eskandani, M. Raeisi, On the Zero Point Problem of Monotone Operators in Hadamard Spaces, Numer. Algorithms 80 (2018), 1155–1179. https://doi.org/10.1007/s11075-018-0521-3.
- J.N Ezeora, H.A Abass, C. Izuchukwu, Strong Convergence Theorem of an Inertial-Type Algorithm to a Common Solution of Minimization and Fixed Point Problems, Math. Vesnik 71 (2019), 338–350.
- H. Khatibzadeh, S. Ranjbar, Monotone Operators and the Proximal Point Algorithm in Complete Cat(0) Metric Spaces, J. Aust. Math. Soc. 103 (2016), 70–90. https://doi.org/10.1017/s1446788716000446.
- C. Izuchukwu, K.O. Aremu, H.A. Abass, O.T. Mewomo, R. Cholamjiak, A Viscosity Proximal Point Algorithm for Solving Optimization Problem in Hadamard Spaces, Nonlinear Stud. 28 (2021), 101.
- C. Izuchukwu, C.C. Okeke, O.T. Mewomo, Systems of Variational Inequalities and Multiple-Set Split Equality Fixed-Point Problems for Countable Families of Multivalued Type-One Mappings of the Demicontractive Type, Ukr. Math. J. 71 (2020), 1692–1718. https://doi.org/10.1007/s11253-020-01742-9.
- C. Izuchukwu, G.C. Ugwunnadi, O.T. Mewomo, Strong Convergence Theorem for Family of Minimization and Monotone Inclusion Problems in Hadamard Spaces, Proyecciones 40 (2021), 525–558. https://doi.org/10.22199/issn.0717-6279-2021-02-0030.
- C. Izuchukwu, H.A. Abass, O. T. Mewomo, Viscosity Approximation Method for Solving Minimization Problem and Fixed Point Problem for Nonexpansive Multivalued Mapping in CAT(0) Spaces, Ann. Acad. Rom. Sci. Ser. Math. Appl. 11 (2019), 130–157.
- S. Kamimura, W. Takahashi, Approximating Solutions of Maximal Monotone Operators in Hilbert Spaces, J. Approx. Theory 106 (2000), 226–240. https://doi.org/10.1006/jath.2000.3493.
- H. Abass, M. Aphane, O.K. Oyewole, O. Narain, K.I. Mustafoyev, Solving Systems of Monotone Variational Inclusion Problems with Multiple Output Sets in Banach Spaces, Eur. J. Pure Appl. Math. 18 (2025), 6062. https://doi.org/10.29020/nybg.ejpam.v18i2.6062.
- B. Martinet, Régularisation d’Inéquations Variationnelles par Approximation Successives, Rev. Fr. Inform. Rech. Opér. 4 (1970), 154–158.
- G.N. Ogwo, H.A. Abass, C. Izuchukwu, O.T. Mewomo, Modified Proximal Point Methods Involving QuasiPseudocontractive Mappings in Hadamard Spaces, Acta Math. Vietnam. 47 (2022), 847–873. https://doi.org/10.1007/s40306-022-00480-3.
- C.C. Okeke, C. Izuchukwu, A Strong Convergence Theorem for Monotone Inclusion and Minimization Problems in Complete CAT(0) Spaces, Optim. Methods Softw. 34 (2018), 1168–1183. https://doi.org/10.1080/10556788.2018.1472259.
- A.A. Mebawondu, H.A. Abass, O.K. Oyewole, An Accelerated Tseng Type Method for Solving Zero Point Problems and Certain Optimization Problems, Afr. Mat. 36 (2025), 13. https://doi.org/10.1007/s13370-024-01217-1.
- O.K. Oyewole, H.A. Abass, O.J. Ogunsola, An Improved Subgradient Extragradient Self-Adaptive Algorithm Based on the Golden Ratio Technique for Variational Inequality Problems in Banach Spaces, J. Comput. Appl. Math. 460 (2025), 116420. https://doi.org/10.1016/j.cam.2024.116420.
- O.M. Onifade, H.A. Abass, O.K. Narain, Self-adaptive Method for Solving Multiple Set Split Equality Variational Inequality and Fixed Point Problems in Real Hilbert Spaces, Ann. Univ. Ferrara 70 (2023), 1–22. https://doi.org/10.1007/s11565-022-00455-0.
- S. Ranjbar, H. Khatibzadeh, Strong and ∆-Convergence to a Zero of a Monotone Operator in CAT(0) Spaces, Mediterr. J. Math. 14 (2017), 56. https://doi.org/10.1007/s00009-017-0885-y.
- R.T. Rockafellar, Monotone Operators and the Proximal Point Algorithm, SIAM J. Control. Optim. 14 (1976), 877–898. https://doi.org/10.1137/0314056.
- G.C. Ugwunnadi, C. Izuchukwu, O.T. Mewomo, Strong Convergence Theorem for Monotone Inclusion Problem in CAT(0) Spaces, Afr. Mat. 30 (2018), 151–169. https://doi.org/10.1007/s13370-018-0633-x.
- R. Suparatulatorn, P. Cholamjiak, S. Suantai, On Solving the Minimization Problem and the Fixed-Point Problem for Nonexpansive Mappings in CAT(0) Spaces, Optim. Methods Softw. 32 (2016), 182–192. https://doi.org/10.1080/10556788.2016.1219908.
- C.E. Chidume, A.U. Bello, P. Ndambomve, Strong and ∆-Convergence Theorems for Common Fixed Points of a Finite Family of Multivalued Demicontractive Mappings in CAT(0) spaces, Abstr. Appl. Anal. 2014 (2014), 805168. https://doi.org/10.1155/2014/805168.
- S. Dhompongsa, B. Panyanak, On ∆-Convergence Theorems in CAT(0) Spaces, Comput. Math. Appl. 56 (2008), 2572–2579. https://doi.org/10.1016/j.camwa.2008.05.036.
- H. Dehghan, J. Rooin, Metric Projection and Convergence Theorems for Nonexpansive Mappings in Hadamard Spaces, arXiv:1410.1137 (2014). http://arxiv.org/abs/1410.1137v1.
- A. Gharajelo, H. Dehghan, Convergence Theorems for Strict Pseudo-Contractions in CAT(0) Metric Spaces, Filomat 31 (2017), 1967–1971. https://doi.org/10.2298/fil1707967g.
- K. Aoyama, Y. Kimura, W. Takahashi, M. Toyoda, Approximation of Common Fixed Points of a Countable Family of Nonexpansive Mappings in a Banach Space, Nonlinear Anal.: Theory Methods Appl. 67 (2007), 2350–2360. https://doi.org/10.1016/j.na.2006.08.032.
- W. Laowang, B. Panyanak, Strong and ∆ Convergence Theorems for Multivalued Mappings in Spaces, J. Inequal. Appl. 2009 (2009), 730132. https://doi.org/10.1155/2009/730132.