A New Alternative to the Log-Kumaraswamy Distribution: Properties, Estimation, and Fitting Data

Main Article Content

Mustafa Ibrahim Ahmed Araibi, Aadil Ahmad Mir, I. Elbatal, Ehab M. Almetwally, Caner Tanış, Egemen Ozkan, Ahmed M. Gemeay

Abstract

Statistical distributions play a crucial role in modelling real-life data in various fields. Recently, various statistical distributions have been proposed and used in real-life data analysis. This paper introduces a novel statistical distribution as an alternative to the log-Kumaraswamy distribution. It is called the power log-Kumaraswamy distribution. We explore several distributional properties of the suggested distribution. We consider nine estimation techniques, namely, maximum likelihood, Cramér-von Mises, maximum product of spacing, least squares, weighted least squares, Anderson–Darling, right-tailed Anderson–Darling, minimum spacing absolute distance, and minimum spacing absolute-log distance methods to estimate the parameters of the introduced distribution. The performances of these estimators are evaluated via an extensive Monte Carlo simulation study. Furthermore, the applicability and superiority of the power log-Kumaraswamy distribution are demonstrated through two practical data examples from engineering and health economics. The goodness-of-fit analysis’s results support the proposed distribution’s superiority over its main competitors.

Article Details

References

  1. G. Mudholkar, D. Srivastava, Exponentiated Weibull Family for Analyzing Bathtub Failure-Rate Data, IEEE Trans. Reliab. 42 (1993), 299–302. https://doi.org/10.1109/24.229504.
  2. A. Marshall, A New Method for Adding a Parameter to a Family of Distributions with Application to the Exponential and Weibull Families, Biometrika 84 (1997), 641–652. https://doi.org/10.1093/biomet/84.3.641.
  3. M.A. Lone, I.H. Dar, T. Jan, A New Family of Generalized DistributionsWith an Application to Weibull Distribution, Thail. Stat. 22 (2024), 1–16.
  4. A. Alzaatreh, C. Lee, F. Famoye, A New Method for Generating Families of Continuous Distributions, METRON 71 (2013), 63–79. https://doi.org/10.1007/s40300-013-0007-y.
  5. Z. Shah, D.M. Khan, I. Khan, B. Ahmad, M. Jeridi, S. Al-Marzouki, A Novel Flexible Exponent Power-X Family of Distributions with Applications to Covid-19 Mortality Rate in Mexico and Canada, Sci. Rep. 14 (2024), 8992. https://doi.org/10.1038/s41598-024-59720-1.
  6. O.H. Odhah, H.M. Alshanbari, Z. Ahmad, F. Khan, A.A.H. El-Bagoury, A New Family of Distributions Using a Trigonometric Function: Properties and Applications in the Healthcare Sector, Heliyon 10 (2024), e29861. https://doi.org/10.1016/j.heliyon.2024.e29861.
  7. A.A. Mir, S.U. Rasool, S.P. Ahmad, A.A. Bhat, T.M. Jawa, N. Sayed-Ahmed, A.H. Tolba, A Robust Framework for Probability Distribution Generation: Analyzing Structural Properties and Applications in Engineering and Medicine, Axioms 14 (2025), 281. https://doi.org/10.3390/axioms14040281.
  8. P. Kumaraswamy, A Generalized Probability Density Function for Double-Bounded Random Processes, J. Hydrol. 46 (1980), 79–88. https://doi.org/10.1016/0022-1694(80)90036-0.
  9. S. Dey, J. Mazucheli, S. Nadarajah, Kumaraswamy Distribution: Different Methods of Estimation, Comput. Appl. Math. 37 (2017), 2094–2111. https://doi.org/10.1007/s40314-017-0441-1.
  10. R. Alshkaki, A Generalized Modification of the Kumaraswamy Distribution for Modeling and Analyzing Real-Life Data, Stat. Optim. Inf. Comput. 8 (2020), 521–548. https://doi.org/10.19139/soic-2310-5070-869.
  11. F. Jamal, M. Arslan Nasir, G. Ozel, M. Elgarhy, N. Mamode Khan, Generalized Inverted Kumaraswamy Generated Family of Distributions: Theory and Applications, J. Appl. Stat. 46 (2019), 2927–2944. https://doi.org/10.1080/02664763.2019.1623867.
  12. M. Jones, Kumaraswamy’s Distribution: a Beta-Type Distribution with Some Tractability Advantages, Stat. Methodol. 6 (2009), 70–81. https://doi.org/10.1016/j.stamet.2008.04.001.
  13. A.K. Mahto, C. Lodhi, Y.M. Tripathi, L. Wang, Inference for Partially Observed Competing Risks Model for Kumaraswamy Distribution Under Generalized Progressive Hybrid Censoring, J. Appl. Stat. 49 (2021), 2064–2092. https://doi.org/10.1080/02664763.2021.1889999.
  14. M. Garg, on Generalized Order Statistics from Kumaraswamy Distribution, Tamsui Oxford J. Math. Sci. 25 (2009), 153–166.
  15. R. Gholizadeh, M. Khalilpor, M. Hadian, Bayesian Estimations in the Kumaraswamy Distribution Under Progressively Type Ii Censoring Data, Int. J. Eng. Sci. Technol. 3 (1970), 47–65. https://doi.org/10.4314/ijest.v3i9.4.
  16. A.J. Lemonte, Improved Point Estimation for the Kumaraswamy Distribution, J. Stat. Comput. Simul. 81 (2011), 1971–1982. https://doi.org/10.1080/00949655.2010.511621.
  17. M.K. Rastogi, P.E. Oguntunde, Classical and Bayes Estimation of Reliability Characteristics of the KumaraswamyInverse Exponential Distribution, Int. J. Syst. Assur. Eng. Manag. 10 (2018), 190–200. https://doi.org/10.1007/s13198-018-0744-7.
  18. C. Tanis, B. Saracoglu, Comparisons of Six Different Estimation Methods for Log-Kumaraswamy Distribution, Therm. Sci. 23 (2019), 1839–1847. https://doi.org/10.2298/tsci190411344t.
  19. M.A. de Pascoa, E.M. Ortega, G.M. Cordeiro, The Kumaraswamy Generalized Gamma Distribution with Application in Survival Analysis, Stat. Methodol. 8 (2011), 411–433. https://doi.org/10.1016/j.stamet.2011.04.001.
  20. G.M. Cordeiro, S. Nadarajah, E.M.M. Ortega, The Kumaraswamy Gumbel Distribution, Stat. Methods Appl. 21 (2011), 139–168. https://doi.org/10.1007/s10260-011-0183-y.
  21. G.M. Cordeiro, E.M. Ortega, G.O. Silva, The Kumaraswamy Modified Weibull Distribution: Theory and Applications, J. Stat. Comput. Simul. 84 (2012), 1387–1411. https://doi.org/10.1080/00949655.2012.745125.
  22. T.M. Shams, The Kumaraswamy-Generalized Lomax Distribution, Middle-East J. Sci. Res. 17 (2013), 641–646.
  23. A.E. Gomes, C.Q. da-Silva, G.M. Cordeiro, E.M. Ortega, A New Lifetime Model: the Kumaraswamy Generalized Rayleigh Distribution, J. Stat. Comput. Simul. 84 (2012), 290–309. https://doi.org/10.1080/00949655.2012.706813.
  24. J. N., Kumaraswamy Inverse Flexible Weibull Distribution: Theory and Application, Int. J. Comput. Appl. 154 (2016), 41–46. https://doi.org/10.5120/ijca2016912223.
  25. M.M. Nassar, The Kumaraswamy Laplace Distribution, Pak. J. Stat. Oper. Res. 12 (2016), 609–624. https://doi.org/10.18187/pjsor.v12i4.1485.
  26. R. Rocha, S. Nadarajah, V. Tomazella, F. Louzada, A. Eudes, New Defective Models Based on the Kumaraswamy Family of Distributions with Application to Cancer Data Sets, Stat. Methods Med. Res. 26 (2015), 1737–1755. https://doi.org/10.1177/0962280215587976.
  27. J. Bengalath, B. Punathumparambath, Harris Extended Inverted Kumaraswamy Distribution: Properties and Applications to COVID-19 Data, Int. J. Data Sci. Anal. (2024). https://doi.org/10.1007/s41060-024-00639-1.
  28. S.S. Ferreira, D. Ferreira, Odd Generalized Exponential Kumaraswamy–weibull Distribution, Mathematics 13 (2025), 1136. https://doi.org/10.3390/math13071136.
  29. P. S S Swetha, V.B.V. Nagarjuna, The Kumaraswamy Modified Kies-G Family of Distributions: Properties and Applications, Phys. Scr. 100 (2025), 035024. https://doi.org/10.1088/1402-4896/adb10c.
  30. W. Fikre, H.S. Kapoor, K. Jain, Kumaraswamy Alpha Power Lomax Distribution: Properties and Applications in Actuarial Sciences, Stat. Optim. Inf. Comput. 13 (2024), 664–693. https://doi.org/10.19139/soic-2310-5070-2138.
  31. A.J. Lemonte, W. Barreto-Souza, G.M. Cordeiro, The Exponentiated Kumaraswamy Distribution and Its LogTransform, Braz. J. Probab. Stat. 27 (2013), 31–53. https://doi.org/10.1214/11-bjps149.
  32. A.I. Ishaq, A.A. Suleiman, H. Daud, N.S.S. Singh, M. Othman, R. Sokkalingam, P. Wiratchotisatian, A.G. Usman, S.I. Abba, Log-kumaraswamy Distribution: Its Features and Applications, Front. Appl. Math. Stat. 9 (2023), 1258961. https://doi.org/10.3389/fams.2023.1258961.
  33. P.D.M. Macdonald, Comments and Queries Comment on “an Estimation Procedure for Mixtures of Distributions” by Choi and Bulgren, J. R. Stat. Soc. Ser. B: Stat. Methodol. 33 (1971), 326–329. https://doi.org/10.1111/j.2517-6161.1971.tb00884.x.
  34. R.C.H. Cheng, N.A.K. Amin, Estimating Parameters in Continuous Univariate Distributions with a Shifted Origin, J. R. Stat. Soc. Ser. B: Stat. Methodol. 45 (1983), 394–403. https://doi.org/10.1111/j.2517-6161.1983.tb01268.x.
  35. B. Ranneby, The Maximum Spacing Method. An Estimation Method Related to the Maximum Likelihood Method, Scand. J. Stat. 11 (1984), 93–112. https://www.jstor.org/stable/4615946.
  36. J.J. Swain, S. Venkatraman, J.R. Wilson, Least-squares Estimation of Distribution Functions in Johnson’s Translation System, J. Stat. Comput. Simul. 29 (1988), 271–297. https://doi.org/10.1080/00949658808811068.
  37. T.W. Anderson, D.A. Darling, Asymptotic Theory of Certain "goodness of Fit" Criteria Based on Stochastic Processes, Ann. Math. Stat. 23 (1952), 193–212. https://doi.org/10.1214/aoms/1177729437.
  38. D.D. Boos, Minimum Distance Estimators for Location and Goodness of Fit, J. Am. Stat. Assoc. 76 (1981), 663–670. https://doi.org/10.2307/2287527.
  39. A. Torabi, A General Method for Estimating and Hypotheses Testing Using Spacing, J. Stat. Theory Appl. 8 (2008), 163–168.
  40. P.R. Fisk, The Graduation of Income Distributions, Econometrica 29 (1961), 171–185. https://doi.org/10.2307/1909287.
  41. M. Hussian, E. A. Amin, Estimation and Prediction for the Kumaraswamy-Inverse Rayleigh Distribution Based on Records, Int. J. Adv. Stat. Probab. 2 (2013), 21–27. https://doi.org/10.14419/ijasp.v2i1.1729.
  42. R.M. Smith, L.J. Bain, An Exponential Power Life-Testing Distribution, Commun. Stat. 4 (1975), 469–481. https://doi.org/10.1080/03610927508827263.
  43. A. Asgharzadeh, H.S. Bakouch, M. Habibi, A Generalized Binomial Exponential 2 Distribution: Modeling and Applications to Hydrologic Events, J. Appl. Stat. 44 (2016), 2368–2387. https://doi.org/10.1080/02664763.2016.1254729.
  44. M.G. Bader, A.M. Priest, Statistical Aspects of Fibre and Bundle Strength in Hybrid Composites, in: T. Hayashi, K. Kawata, S. Umekawa (eds), Progress in Science and Engineering of Composites, Japanese Society for Composites Materials, Tokyo, pp. 1129–1136, (1982).
  45. D. Kundu, M.Z. Raqab, Estimation of for Three-Parameter Weibull Distribution, Stat. Probab. Lett. 79 (2009), 1839–1846. https://doi.org/10.1016/j.spl.2009.05.026.
  46. Z.M. Nofal, A.Z. Afify, H.M. Yousof, G.M. Cordeiro, The Generalized Transmuted-G Family of Distributions, Commun. Stat. - Theory Methods 46 (2016), 4119–4136. https://doi.org/10.1080/03610926.2015.1078478.
  47. B.G. Kibria, M. Shakil, A New Five-Parameter Burr System of Distributions Based on Generalized Pearson Differential Equation, in: JSM Proceedings, Section on Physical and Engineering Sciences, pp. 866–880, (2011).