Hypercomplex Representations of the Affine Group

Main Article Content

Amjad Saleh Alghamdi

Abstract

In this paper, we consider representations of the affine group that are induced by hypercomplex characters specifically, double and dual characters instead of complex characters. The double and dual number systems provide a rich algebraic structure that allows for the development of generalized representations, extending beyond the complex Hilbert spaces. We derive the hypercomplex representations by starting from certain subgroups of the affine group. Then, we investigate how these representations act on vector spaces equipped with indefinite inner products, naturally leading to the framework of Krein spaces.

Article Details

References

  1. A.A. Harkin, J.B. Harkin, Geometry of Generalized Complex Numbers, Math. Mag. 77 (2004), 118–129. https://doi.org/10.1080/0025570x.2004.11953236.
  2. A.A. Kirillov, Elements of the Theory of Representations, Springer, Berlin, 1976. https://doi.org/10.1007/978-3-642-66243-0.
  3. A. Khrennikov, Hyperbolic Quantum Mechanics, Adv. Appl. Clifford Algebr. 13 (2003), 1–9. https://doi.org/10.1007/s00006-003-0001-1.
  4. A.S. Elmabrok, O. Hutník, Induced Representations of the Affine Group and Intertwining Operators: I. Analytical Approach, J. Phys.: Math. Theor. 45 (2012), 244017. https://doi.org/10.1088/1751-8113/45/24/244017.
  5. E. Kaniuth, K.F. Taylor, Induced Representations of Locally Compact Groups, Cambridge University Press, 2013. https://doi.org/10.1017/cbo9781139045391.
  6. F. Catoni, D. Boccaletti, R. Cannata, V. Catoni, P. Zampetti, Geometry of Minkowski Space-Time, Springer, Berlin, 2011. https://doi.org/10.1007/978-3-642-17977-8.
  7. G.B. Folland, A Course in Abstract Harmonic Analysis, Chapman and Hall/CRC, 1995. https://doi.org/10.1201/b19172.
  8. G.F. Torres Del Castillo, Some Applications in Classical Mechanics of the Double and the Dual Numbers, Rev. Mex. Fís. E 65 (2019), 152–155. https://doi.org/10.31349/revmexfise.65.152.
  9. I.L. Kantor, A.S. Solodovnikov, Hypercomplex Numbers: An Elementary Introduction to Algebras, Springer, Berlin, 1989.
  10. I.M. Gelfand, M.A. Naimark, Unitary Representations of the Group of Linear Transformations of the Straight Line, Dokl. Akad. Nauk SSSR 55 (1947), 567–570.
  11. B. Gordon, ed., A Simple Non-Euclidean Geometry and Its Physical Basis, Springer, New York, 1979. https://doi.org/10.1007/978-1-4612-6135-3.
  12. Y. Gu, Clifford Algebra and Hypercomplex Number as Well as Their Applications in Physics, J. Appl. Math. Phys. 10 (2022), 1375–1393. https://doi.org/10.4236/jamp.2022.104097.
  13. Y. Gu, Miraculous Hypercomplex Numbers, Math. Syst. Sci. 1 (2023), 2258. https://doi.org/10.54517/mss.v1i1.2258.
  14. J. Fulman, R.M. Guralnick, Enumeration of Conjugacy Classes in Affine Groups, Algebr. Number Theory 18 (2024), 1189–1219. https://doi.org/10.2140/ant.2024.18.1189.
  15. V.V. Kisil, Hypercomplex Representations of the Heisenberg Group and Mechanics, Int. J. Theor. Phys. 51 (2011), 964–984. https://doi.org/10.1007/s10773-011-0970-0.
  16. V.V. Kisil, Geometry of Möbius Transformations: Elliptic, Parabolic and Hyperbolic Actions of SL2(R) (With DVD-ROM), Imperial College Press, 2012. https://doi.org/10.1142/p835.
  17. V.V. Kisil, Symmetry, Geometry and Quantization with Hypercomplex Numbers, Geom. Integrability Quantization 18 (2017), 11–76. https://doi.org/10.7546/giq-18-2017-11-76.
  18. A. Alghamdi, T. Alqurashi, Note on the Affine Group Representations, Eur. J. Pure Appl. Math. 18 (2025), 5735. https://doi.org/10.29020/nybg.ejpam.v18i1.5735.
  19. O. Ferrer, K. Ferrer, J. Cure, Construction of Spaces with an Indefinite Two-Metric and Applications, arXiv:2504.08239 (2025). https://doi.org/10.48550/arXiv.2504.08239.
  20. T.I. Azizov, I.S. Iokhvidov, Linear Operators in Spaces with an Indefinite Metric, Wiley, Chichester, 1989.
  21. O.F. VILLAR, E.A. ORTIZ, J.N. MARTÍNEZ, Atomic Systems in Krein Spaces, Turk. J. Math. 47 (2023), 1335–1349. https://doi.org/10.55730/1300-0098.3432.
  22. J. Bognár, Indefinite Inner Product Spaces, Springer, Berlin, (1974).
  23. T.Y. Azizov, Y.P. Ginsburg, H. Langer, On M. G. Krein’s Papers in the Theory of Spaces with an Indefinite Metric, Ukr. Math. J. 46 (1995), 3–14. https://doi.org/10.1007/bf01056997.
  24. J. Cockle, III. On a New Imaginary in Algebra, Lond. Edinb. Dublin Philos. Mag. J. Sci. 34 (1849), 37–47. https://doi.org/10.1080/14786444908646169.
  25. W.K. Clifford, Preliminary Sketch of Biquaternions, Proc. Lond. Math. Soc. s1-4 (1871), 381–395. https://doi.org/10.1112/plms/s1-4.1.381.