Analysis and Cost-Effecteveness of Hepatities B Virus (HBV) Model
Main Article Content
Abstract
This paper presents a mathematical model for Hepatitis B virus (HBV) dynamics. The model is analyzed to establish the existence, positivity, and uniqueness of its solutions, the derivation of the basic reproductive number (R0), stability analysis of the disease-free equilibrium (DFE), sensitivity analysis is conducted to determine the impact of the parameters on R0. The model is extended to include optimal control variables that represent interventions aimed at reducing HBV transmission and minimizing associated costs. Several control strategies are presented supported by numerical simulations and graphical results.
Article Details
References
- World Health Organization, Hepatitis B. https://www.who.int/news-room/fact-sheets/detail/hepatitis-b.
- M.A. Khan, S. Islam, M. Arif, Z. ul Haq, Transmission Model of Hepatitis B Virus with the Migration Effect, BioMed Res. Int. 2013 (2013), 150681. https://doi.org/10.1155/2013/150681.
- A.V. Kamyad, R. Akbari, A.A. Heydari, A. Heydari, Mathematical Modeling of Transmission Dynamics and Optimal Control of Vaccination and Treatment for Hepatitis B Virus, Comput. Math. Methods Med. 2014 (2014), 475451. https://doi.org/10.1155/2014/475451.
- S.H. Elkhadir, A.E.M. Saeed, A. Abasher, Mathematical Model of Hepatitis B Virus with Effect of Vaccination and Treatments, Int. J. Anal. Appl. 20 (2022), 53. https://doi.org/10.28924/2291-8639-20-2022-53.
- J. Heffernan, R. Smith, L. Wahl, Perspectives on the Basic Reproductive Ratio, J. R. Soc. Interface 2 (2005), 281–293. https://doi.org/10.1098/rsif.2005.0042.
- H. Alrabaiah, M.A. Safi, M.H. DarAssi, B. Al-Hdaibat, S. Ullah, M.A. Khan, S.A. Ali Shah, Optimal Control Analysis of Hepatitis B Virus with Treatment and Vaccination, Results Phys. 19 (2020), 103599. https://doi.org/10.1016/j.rinp.2020.103599.
- M.A. Belay, O.J. Abonyo, D.M. Theuri, Mathematical Model of Hepatitis B Disease with Optimal Control and Cost‐effectiveness Analysis, Comput. Math. Methods Med. 2023 (2023), 5215494. https://doi.org/10.1155/2023/5215494.
- I. Zada, M. Naeem Jan, N. Ali, D. Alrowail, K. Sooppy Nisar, G. Zaman, Mathematical Analysis of Hepatitis B Epidemic Model with Optimal Control, Adv. Differ. Equ. 2021 (2021), 451. https://doi.org/10.1186/s13662-021-03607-2.
- A. Khan, R. Zarin, G. Hussain, A.H. Usman, U.W. Humphries, J. Gomez-Aguilar, Modeling and Sensitivity Analysis of Hbv Epidemic Model with Convex Incidence Rate, Results Phys. 22 (2021), 103836. https://doi.org/10.1016/j.rinp.2021.103836.
- M.A. Khan, S. Islam, G. Zaman, Media Coverage Campaign in Hepatitis B Transmission Model, Appl. Math. Comput. 331 (2018), 378–393. https://doi.org/10.1016/j.amc.2018.03.029.
- A. Din, Y. Li, M.A. Shah, The Complex Dynamics of Hepatitis B Infected Individuals with Optimal Control, J. Syst. Sci. Complex. 34 (2021), 1301–1323. https://doi.org/10.1007/s11424-021-0053-0.
- J. Nayeem, C. N. Podder, A Mathematical Study on the Vaccination Impact on the Disease Dynamics of HBV, IOSR J. Math. 10 (2014), 26–44. https://doi.org/10.9790/5728-10612644.
- J. Zhang, S. Zhang, Application and Optimal Control for an Hbv Model with Vaccination and Treatment, Discret. Dyn. Nat. Soc. 2018 (2018), 2076983. https://doi.org/10.1155/2018/2076983.
- Z. Khatun, M. Islam, U. Ghosh, Mathematical Modeling of Hepatitis B Virus Infection Incorporating Immune Responses, Sensors Int. 1 (2020), 100017. https://doi.org/10.1016/j.sintl.2020.100017.
- S. Yusuf, A.A. Momoh, S. Musa, A. Alhassan, Mathematical Model and Optimal Control Strategy for the Dynamics of Hepatitis B Virus Disease Incorporating Treatment Failure and Advanced Stage Compartments, Int. J. Dev. Math. 1 (2024), 237–261. https://doi.org/10.62054/ijdm/0102.20.