Stability of an Additive-Quadratic Functional Equation in a Banach Space

Main Article Content

Siriluk Donganont, Choonkil Park, Nipa Jun-on, Raweerote Suparatulatorn

Abstract

Using the direct and fixed point methods, we obtain the Hyers-Ulam stability of the following additive-quadratic functional equation: \[2h(p+q, r+s) + h(p+q, r-s)\] \[= 3\left[h(p, r) + h(p, s) + h(q, r) + h(q, s)\right]\] in a Banach space.

Article Details

References

  1. T. Aoki, On the Stability of the Linear Transformation in Banach Spaces., J. Math. Soc. Jpn. 2 (1950), 64–66. https://doi.org/10.2969/jmsj/00210064.
  2. M. Amyari, C. Baak, M.S. Moslehian, Nearly Ternary Derivations, Taiwan. J. Math. 11 (2007), 1417–1424. https://doi.org/10.11650/twjm/1500404874.
  3. L. C ˘adariu, V. Radu, Fixed Points and the Stability of Jensen’s Functional Equation, J. Inequal. Pure Appl. Math. 4 (2003), 4.
  4. L. C ˘adariu, V. Radu, On the Stability of the Cauchy Functional Equation: A Fixed Point Approach, Grazer Math. Ber. 346 (2004), 43–52.
  5. L. C ˘adariu, V. Radu, Fixed Point Methods for the Generalized Stability of Functional Equations in a Single Variable, Fixed Point Theory Appl. 2008 (2007), 749392. https://doi.org/10.1155/2008/749392.
  6. Y.J. Cho, C. Park, R. Saadati, Functional Inequalities in Non-Archimedean Banach Spaces, Appl. Math. Lett. 23 (2010), 1238–1242. https://doi.org/10.1016/j.aml.2010.06.005.
  7. J.B. Diaz, B. Margolis, A Fixed Point Theorem of the Alternative, for Contractions on a Generalized Complete Metric Space, Bull. Am. Math. Soc. 74 (1968), 305–309. https://doi.org/10.1090/s0002-9904-1968-11933-0.
  8. S. Donganont, C. Park, Combined System of Additive Functional Equations in Banach Algebras, Open Math. 22 (2024), 20230177. https://doi.org/10.1515/math-2023-0177.
  9. I. EL-Fassi, Generalized Hyperstability of a Drygas Functional Equation on a Restricted Domain Using Brzd ˛ek’s Fixed Point Theorem, J. Fixed Point Theory Appl. 19 (2017), 2529–2540. https://doi.org/10.1007/s11784-017-0439-8.
  10. M.E. Gordji, A. Fazeli, C. Park, 3-Lie Multipliers on Banach 3-Lie Algebras, Int. J. Geom. Methods Mod. Phys. 09 (2012), 1250052. https://doi.org/10.1142/s0219887812500521.
  11. M.E. Gordji, M.B. Ghaemi, B. Alizadeh, A Fixed-Point Method for Perturbation of Higher Ring Derivations in Non-Archimedean Banach Algebras, Int. J. Geom. Methods Mod. Phys. 08 (2011), 1611–1625. https://doi.org/10.1142/s021988781100583x.
  12. P. Gavruta, A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings, J. Math. Anal. Appl. 184 (1994), 431–436. https://doi.org/10.1006/jmaa.1994.1211.
  13. I. Hwang, C. Park, Ulam Stability of an Additive-Quadratic Functional Equation in Banach Spaces, Journal Mathematical Inequalities (2020), 421–436. https://doi.org/10.7153/jmi-2020-14-27.
  14. D.H. Hyers, On the Stability of the Linear Functional Equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222.
  15. D.H. Hyers, The Stability of Homomorphisms and Related Topics, in: Global Analysis-Analysis on Manifolds, pp. 140–153, (1983).
  16. D.H. Hyers, T.M. Rassias, Approximate Homomorphisms, Aequ. Math. 44 (1992), 125–153. https://doi.org/10.1007/bf01830975.
  17. D.H. Hyers, S.M. Ulam, Approximately Convex Functions, Proc. Am. Math. Soc. 3 (1952), 821–828. https://doi.org/10.1090/s0002-9939-1952-0049962-5.
  18. G. Isac, T.M. Rassias, Stability of ψ-Additive Mappings: Applications to Nonlinear Analysis, Int. J. Math. Math. Sci. 19 (1994), 219–228. https://doi.org/10.1155/s0161171296000324.
  19. S. Jung, D. Popa, M.T. Rassias, On the Stability of the Linear Functional Equation in a Single Variable on Complete Metric Groups, J. Glob. Optim. 59 (2013), 165–171. https://doi.org/10.1007/s10898-013-0083-9.
  20. S. Jung, M.T. Rassias, C. Mortici, On a Functional Equation of Trigonometric Type, Appl. Math. Comput. 252 (2015), 294–303. https://doi.org/10.1016/j.amc.2014.12.019.
  21. Y. Lee, S. Jung, M.T. Rassias, Uniqueness Theorems on Functional Inequalities Concerning Cubic-QuadraticAdditive Equation, J. Math. Inequal. 12 (2018), 43–61. https://doi.org/10.7153/jmi-2018-12-04.
  22. D. Mihe¸t, V. Radu, On the Stability of the Additive Cauchy Functional Equation in Random Normed Spaces, J. Math. Anal. Appl. 343 (2008), 567–572. https://doi.org/10.1016/j.jmaa.2008.01.100.
  23. I. Nikoufar, Jordan (θ, φ)-Derivations on Hilbert C ∗ -Modules, Indag. Math. 26 (2015), 421–430.
  24. C. Park, Additive ρ-Functional Inequalities and Equations, J. Math. Inequal. 9 (2015), 17–26.
  25. C. Park, Additive ρ-Functional Inequalities in Non-Archimedean Normed Spaces, J. Math. Inequal. 9 (2015), 397–407.
  26. C. Park, Fixed Point Method for Set-Valued Functional Equations, J. Fixed Point Theory Appl. 19 (2017), 2297–2308. https://doi.org/10.1007/s11784-017-0418-0.
  27. C. Park, Biderivations and Bihomomorphisms in Banach Algebras, Filomat 33 (2019), 2317–2328. https://doi.org/10.2298/fil1908317p.
  28. C. Park, K. Tamilvanan, G. Balasubramanian, B. Noori, A. Najati, On a Functional Equation That Has the QuadraticMultiplicative Property, Open Math. 18 (2020), 837–845. https://doi.org/10.1515/math-2020-0032.
  29. V. Radu, The Fixed Point Alternative and the Stability of Functional Equations, Fixed Point Theory 4 (2003), 91–96.
  30. T.M. Rassias, On the Stability of the Linear Mapping in Banach Spaces, Proc. Am. Math. Soc. 72 (1978), 297–300. https://doi.org/10.2307/2042795.
  31. A. Thanyacharoen, W. Sintunavarat, The New Investigation of the Stability of Mixed Type Additive-Quartic Functional Equations in Non-Archimedean Spaces, Demonstr. Math. 53 (2020), 174–192. https://doi.org/10.1515/dema-2020-0009.
  32. A. Thanyacharoen, W. Sintunavarat, On New Stability Results for Composite Functional Equations in Quasi-βNormed Spaces, Demonstr. Math. 54 (2021), 68–84. https://doi.org/10.1515/dema-2021-0002.
  33. S.M. Ulam, A Collection of the Mathematical Problems, Interscience Publishers, New York, 1960.
  34. Z. Wang, Stability of Two Types of Cubic Fuzzy Set-Valued Functional Equations, Results Math. 70 (2015), 1–14. https://doi.org/10.1007/s00025-015-0457-z.