Laplace Decomposition Shooting Method for Solving Two-Point Boundary Value Problems
Main Article Content
Abstract
This research aims to present an efficient computational method for finding approximate solutions to the boundary-value problems (BVPs) of ordinary differential equations (ODEs), specifically, the class of two-point BVPs. This method is based on the combination of the shooting method with the mixture of the Laplace transform and the Adomian decomposition method. In addition, the study examined several BVPs in both the linear and nonlinear cases of the second- and third-order ODEs. For validating the suggested method, the acquired results are contrasted with the actual solutions and those of the other approximation methods. Moreover, the convergence of the proposed method to the actual analytical solutions has been noted to be very high. Additionally, this method provides the most accurate numerical results for BVPs per this study's findings.
Article Details
References
- B.S. Attili, M.I. Syam, Efficient Shooting Method for Solving Two Point Boundary Value Problems, Chaos Solitons Fractals 35 (2008), 895-903. https://doi.org/10.1016/j.chaos.2006.05.094.
- B.S. Kashkari, H. Bakodah, New Modification of Laplace Decomposition Method for Seventh Order KdV Equation, Appl. Math. Inf. Sci. 9 (2015), 2507-2512.
- N.A. Al-Zaid, H.O. Bakodah, F.A. Hendi, Numerical Solutions of the Regularized Long-Wave (RLW) Equation Using New Modification of Laplace-Decomposition Method, Adv. Pure Math. 03 (2013), 159-163. https://doi.org/10.4236/apm.2013.31a022.
- H.O. Bakodah, B.S. Kashkari, New Modification of Laplace–Adomian Decomposition Method for the Fifth-Order KdV Equation, in: International Conference on Mathematical Sciences and Statistics 2013, Springer, Singapore, 2014, pp. 77-89. https://doi.org/10.1007/978-981-4585-33-0_9.
- H.O. Bakodah, A New Modification of the Laplace Adomian Decomposition Method for System of Integral Equations, J. Amer. Sci. 8 (2012), 241-246.
- O. Kiymaz, An Algorithm for Solving Initial Value Problems Using Laplace Adomian Decomposition Method, Appl. Math. Sci. 3 (2009), 1453-1459.
- S.A. Khuri, A Laplace Decomposition Algorithm Applied to a Class of Nonlinear Differential Equations, J. Appl. Math. 1 (2001), 141-155. https://doi.org/10.1155/s1110757x01000183.
- S.N. Ha, A Nonlinear Shooting Method for Two-Point Boundary Value Problems, Comput. Math. Appl. 42 (2001), 1411-1420. https://doi.org/10.1016/s0898-1221(01)00250-4.
- M.A. Arefin, M.A. Nishu, M.N. Dhali, M.H. Uddin, Analysis of Reliable Solutions to the Boundary Value Problems by Using Shooting Method, Math. Probl. Eng. 2022 (2022), 2895023. https://doi.org/10.1155/2022/2895023.
- N. Al-Zaid, K. Alzahrani, H. Bakodah, M. Al-Mazmumy, Efficient Decomposition Shooting Method for Solving Third-Order Boundary Value Problems, Int. J. Mod. Nonlinear Theory Appl. 12 (2023), 81-98. https://doi.org/10.4236/ijmnta.2023.123006.
- K.A. Alzahrani, N.A. Alzaid, H.O. Bakodah, M.H. Almazmumy, Computational Approach to Third-Order Nonlinear Boundary Value Problems via Efficient Decomposition Shooting Method, Axioms 13 (2024), 248. https://doi.org/10.3390/axioms13040248.
- H.O. Bakodah, K.A. Alzahrani, N.A. Alzaid, M.H. Almazmumy, Efficient Decomposition Shooting Method for Tackling Two-Point Boundary Value Models, J. Umm Al-Qura Univ. Appl. Sci. 11 (2024), 319-329. https://doi.org/10.1007/s43994-024-00162-w.
- H.O. Bakodah, K.A. Alzahrani, N.A. Alzaid, Numerical Solutions of Two-Point Nonlinear Boundary Value Problem via Taylor Decomposition Shooting Method, Int. J. Appl. Eng. Technol. 5 (2023), 161-170.
- N. Alzaid, K. Alzahrani, H. Bakodah, Efficient Numerical Technique for Reaction-Diffusion Singularly Perturbed Boundary-Value Problems, Eur. J. Pure Appl. Math. 17 (2024), 4211-4224.
- N. Alzaid, K. Alzahrani, H. Bakodah, Restarted Shooting Method Applied to Jeffery-Hamel Flow Problem, Int. J. Anal. Appl. 23 (2025), 17. https://doi.org/10.28924/2291-8639-23-2025-17.
- M. Munguia, D. Bhatta, Use of Cubic B-Spline in Approximating Solutions of Boundary Value Problems, Appl. Appl. Math.: Int. J. 10 (2015), 750-771.
- B.A. Taha, R.D. Abdul-Wahhab, Numerical Solutions of Boundary Value Problems by Using A New Cubic B-spline Method, J. Iraqi Al-Khwarizmi Soc. 4 (2020), 39-56.
- B. Latif, S.A. Abdul Karim, I. Hashim, New Cubic B-Spline Approximation for Solving Linear Two-Point Boundary-Value Problems, Mathematics 9 (2021), 1250. https://doi.org/10.3390/math9111250.
- A. Khan, T. Sultana, Parametric Quintic Spline Solution of Third-Order Boundary Value Problems, Int. J. Comput. Math. 89 (2012), 1663-1677. https://doi.org/10.1080/00207160.2012.689480.
- W.M. Abd-Elhameed, E.H. Doha, M.M. Alsuyuti,, Numerical Treatment of Special Types of Odd-Order Boundary Value Problems Using Nonsymmetric Cases of Jacobi Polynomials, Prog. Fract. Differ. Appl. 8 (2022), 305-319. https://doi.org/10.18576/pfda/080210.
- S. Alkan, A. Secer, Solving Nonlinear Boundary Value Problems by the Galerkin Method with Sinc Functions, Open Phys. 13 (2015), 389-394. https://doi.org/10.1515/phys-2015-0050.
- Y.Q. Hasan, Z.A.A. AL-Rabahi, Approximate solutions to boundary value problems of higher-order by the modified decomposition method. EPH-Int. J. Math. Stat. 2 (2016), 20-31.
- M. El-Gamel, W. Adel, M.S. El-Azab, Collocation Method Based on Bernoulli Polynomial and Shifted Chebychev for Solving the Bratu Equation, J. Appl. Comput. Math, 7 (2018), 1000407.
- M. Ben-Romdhane, H. Temimi, M. Baccouch, An Iterative Finite Difference Method for Approximating the Two-Branched Solution of Bratu's Problem, Appl. Numer. Math. 139 (2019), 62-76. https://doi.org/10.1016/j.apnum.2019.01.003.
- M. Nabati, S. Nikmanesh, Solving Bratu’s Problem by Double Exponential Sinc Method, J. Math. Model. 8 (2020), 415-433.
- M. Hajipour, A. Jajarmi, D. Baleanu, On the Accurate Discretization of a Highly Nonlinear Boundary Value Problem, Numer. Algorithms 79 (2017), 679-695. https://doi.org/10.1007/s11075-017-0455-1.
- N. Das, R. Singh, A. Wazwaz, J. Kumar, An Algorithm Based on the Variational Iteration Technique for the Bratu-Type and the Lane–Emden Problems, J. Math. Chem. 54 (2015), 527-551. https://doi.org/10.1007/s10910-015-0575-6.
- P. Roul, V.M.K. Prasad Goura, A Bessel Collocation Method for Solving Bratu’s Problem, J. Math. Chem. 58 (2020), 1601-1614. https://doi.org/10.1007/s10910-020-01147-w.
- M. Al-Mazmumy, A. Al-Mutairi, K. Al-Zahrani, An Efficient Decomposition Method for Solving Bratu’s Boundary Value Problem, Am. J. Comput. Math. 07 (2017), 84-93. https://doi.org/10.4236/ajcm.2017.71007.
- G. Mustafa, S.T. Ejaz, S. Kouser, S. Ali, M. Aslam, Subdivision Collocation Method for One-Dimensional Bratu’s Problem, J. Math. 2021 (2021), 3497017. https://doi.org/10.1155/2021/3497017.
- S. Abbasbandy, M. Hashemi, C. Liu, The Lie-Group Shooting Method for Solving the Bratu Equation, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 4238-4249. https://doi.org/10.1016/j.cnsns.2011.03.033.
- F. Geng, M. Cui, A Novel Method for Nonlinear Two-Point Boundary Value Problems: Combination of ADM and RKM, Appl. Math. Comput. 217 (2011), 4676-4681. https://doi.org/10.1016/j.amc.2010.11.020.
- J. Duan, R. Rach, A New Modification of the Adomian Decomposition Method for Solving Boundary Value Problems for Higher Order Nonlinear Differential Equations, Appl. Math. Comput. 218 (2011), 4090-4118. https://doi.org/10.1016/j.amc.2011.09.037.
- S. Utudee, M. Maleewong, Multilevel Anti-Derivative Wavelets with Augmentation for Nonlinear Boundary Value Problems, Adv. Differ. Equ. 2017 (2017), 100. https://doi.org/10.1186/s13662-017-1156-8.