Special Anisotropic Conformal Changes of Conic Pseudo-Finsler Surfaces

Main Article Content

Nabil L. Youssef, Ebtsam H. Taha, A. A. Kotb, S. G. Elgendi

Abstract

This study presents many special anisotropic conformal changes of a conic pseudo-Finsler surface (M, F), such as C-anisotropic and horizontal C-anisotropic conformal transformations, which reduce to C-conformal when the conformal factor is solely position-dependent. Furthermore, we present vertical C-anisotropic conformal changes and demonstrate that they are characterized by the property of (M, F) being Riemannian. Additionally, we examine the anisotropic conformal transformation that fulfils the φT-condition, the horizontal φT-condition, and the vertical φT-condition. The first two conditions reduce to the σT-condition when the conformal factor relies solely on a positional variable. We demonstrate that, under the vertical φT-condition change, every Landsberg surface is Berwaldian. Thus, the vertical φT-condition is equivalent to the T-condition. Furthermore, we examine the scenario when the anisotropic conformal factor becomes the main scalar of the non-Riemannian surface (M, F). We present an example of a Finslerian Schwarzschild-de Sitter solution having Finslerian spherical symmetry and apply our results to it.

Article Details

References

  1. P.L. Antonelli, R.S. Ingarden, M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Springer, Dordrecht, 1993. https://doi.org/10.1007/978-94-015-8194-3.
  2. S. Bácsó, M. Matsumoto, Reduction Theorems of Certain Landsberg Spaces to Berwald Spaces, Publ. Math. Debr. 48 (1996), 357–366. https://doi.org/10.5486/pmd.1996.1733.
  3. L. Berwald, On Finsler and Cartan Geometries. Iii: Two-Dimensional Finsler Spaces with Rectilinear Extremals, Ann. Math. 42 (1941), 84–112. https://doi.org/10.2307/1968989.
  4. E. Guo, X. Mo, The Geometry of Spherically Symmetric Finsler Manifolds, Springer, Singapore, 2018. https://doi.org/10.1007/978-981-13-1598-5.
  5. S. Elgendi, Finsler Surfaces with Vanishing T-Tensor, J. Geom. Phys. 198 (2024), 105110. https://doi.org/10.1016/j.geomphys.2024.105110.
  6. S.G. ELGENDI, On the Problem of Non-Berwaldian Landsberg Spaces, Bull. Aust. Math. Soc. 102 (2020), 331–341. https://doi.org/10.1017/s000497271900128x.
  7. S. Elgendi, Solutions for the Landsberg Unicorn Problem in Finsler Geometry, J. Geom. Phys. 159 (2021), 103918. https://doi.org/10.1016/j.geomphys.2020.103918.
  8. S.G. Elgendi, L. Kozma, $(alpha ,beta)$-Metrics Satisfying the T-Condition or the $sigma T$-Condition, J. Geom. Anal. 31 (2020), 7866–7884. https://doi.org/10.1007/s12220-020-00555-3.
  9. M. Hashiguchi, On Conformal Transformations of Finsler Metrics, Kyoto J. Math. 16 (1976), 25–50. https://doi.org/10.1215/kjm/1250522956.
  10. M.A. JAVALOYES, B.L. SOARES, Geodesics and Jacobi Fields of Pseudo-Finsler Manifolds, Publ. Math. Debr. 87 (2015), 57–78. https://doi.org/10.5486/pmd.2015.7028.
  11. M.A. Javaloyes, B. Soares, Anisotropic Conformal Invariance of Lightlike Geodesics in Pseudo-Finsler Manifolds, Class. Quantum Grav. 38 (2021), 025002. https://doi.org/10.1088/1361-6382/abc225.
  12. M.S. Knebelman, Conformal Geometry of Generalized Metric Spaces, Proc. Natl. Acad. Sci. 15 (1929), 376–379. https://doi.org/10.1073/pnas.15.4.376.
  13. Y. Ichijyo, M. Hashiguchi, On the Condition That a Randers Space Be Conformally Flat, Rep. Fac. Sci. Kagoshima Univ. 22 (1989), 7–14. https://cir.nii.ac.jp/crid/1573950399701121408.
  14. X. Li, Z. Chang, Exact Solution of Vacuum Field Equation in Finsler Spacetime, Phys. Rev. D 90 (2014), 064049. https://doi.org/10.1103/physrevd.90.064049.
  15. M. Matsumoto, Finsler Geometry in the 20th-Century, in: Handbook of Finsler Geometry, Kluwer Academic Publishers, 2003.
  16. Z. Nekouee, S. Narasimhamurthy, S. Pacif, Black Hole Solutions with Constant Ricci Scalar in a Model of Finsler Gravity, J. Cosmol. Astropart. Phys. 2024 (2024), 061. https://doi.org/10.1088/1475-7516/2024/04/061.
  17. B. Shen, S-closed Conformal Transformations in Finsler Geometry, Differ. Geom. Appl. 58 (2018), 254–263. https://doi.org/10.1016/j.difgeo.2018.02.004.
  18. Y. Shen, Z. Shen, Introduction to Modern Finsler Geometry, World Scientific, 2016. https://doi.org/10.1142/9726.
  19. Z. Shen, Two-dimensional Finsler Metrics with Constant Flag Curvature, Manuscripta Math. 109 (2002), 349–366. https://doi.org/10.1007/s00229-002-0311-y.
  20. S. Tachibana, On Finsler Spaces Which Admit a Concurrent Vector Field, Tensor N.S. 1 (1950), 1–5. https://cir.nii.ac.jp/crid/1573668924681218432.
  21. G. YANG, X. CHENG, Conformal Invariances of Two-Dimensional Finsler Spaces with Isotropic Main Scalar, Publ. Math. Debr. 81 (2012), 327–340. https://doi.org/10.5486/pmd.2012.5191.
  22. N.L. Youssef, S.G. Elgendi, A.A. Kotb, E.H. Taha, Anisotropic Conformal Change of Conic Pseudo-Finsler Surfaces, I, Class. Quantum Grav. 41 (2024), 175005. https://doi.org/10.1088/1361-6382/ad636f.
  23. N.L. Youssef, S.G. Elgendi, A.A. Kotb, E.H. Taha, Anisotropic Conformal Change of Conic Pseudo-Finsler Surfaces, II, arXiv:2503.07842 (2025). http://arxiv.org/abs/2503.07842v1.
  24. N.L. Youssef, S. Elgendi, E.H. Taha, Semi-concurrent Vector Fields in Finsler Geometry, Differ. Geom. Appl. 65 (2019), 1–15. https://doi.org/10.1016/j.difgeo.2019.02.011.