Special Anisotropic Conformal Changes of Conic Pseudo-Finsler Surfaces
Main Article Content
Abstract
This study presents many special anisotropic conformal changes of a conic pseudo-Finsler surface (M, F), such as C-anisotropic and horizontal C-anisotropic conformal transformations, which reduce to C-conformal when the conformal factor is solely position-dependent. Furthermore, we present vertical C-anisotropic conformal changes and demonstrate that they are characterized by the property of (M, F) being Riemannian. Additionally, we examine the anisotropic conformal transformation that fulfils the φT-condition, the horizontal φT-condition, and the vertical φT-condition. The first two conditions reduce to the σT-condition when the conformal factor relies solely on a positional variable. We demonstrate that, under the vertical φT-condition change, every Landsberg surface is Berwaldian. Thus, the vertical φT-condition is equivalent to the T-condition. Furthermore, we examine the scenario when the anisotropic conformal factor becomes the main scalar of the non-Riemannian surface (M, F). We present an example of a Finslerian Schwarzschild-de Sitter solution having Finslerian spherical symmetry and apply our results to it.
Article Details
References
- P.L. Antonelli, R.S. Ingarden, M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Springer, Dordrecht, 1993. https://doi.org/10.1007/978-94-015-8194-3.
- S. Bácsó, M. Matsumoto, Reduction Theorems of Certain Landsberg Spaces to Berwald Spaces, Publ. Math. Debr. 48 (1996), 357–366. https://doi.org/10.5486/pmd.1996.1733.
- L. Berwald, On Finsler and Cartan Geometries. Iii: Two-Dimensional Finsler Spaces with Rectilinear Extremals, Ann. Math. 42 (1941), 84–112. https://doi.org/10.2307/1968989.
- E. Guo, X. Mo, The Geometry of Spherically Symmetric Finsler Manifolds, Springer, Singapore, 2018. https://doi.org/10.1007/978-981-13-1598-5.
- S. Elgendi, Finsler Surfaces with Vanishing T-Tensor, J. Geom. Phys. 198 (2024), 105110. https://doi.org/10.1016/j.geomphys.2024.105110.
- S.G. ELGENDI, On the Problem of Non-Berwaldian Landsberg Spaces, Bull. Aust. Math. Soc. 102 (2020), 331–341. https://doi.org/10.1017/s000497271900128x.
- S. Elgendi, Solutions for the Landsberg Unicorn Problem in Finsler Geometry, J. Geom. Phys. 159 (2021), 103918. https://doi.org/10.1016/j.geomphys.2020.103918.
- S.G. Elgendi, L. Kozma, $(alpha ,beta)$-Metrics Satisfying the T-Condition or the $sigma T$-Condition, J. Geom. Anal. 31 (2020), 7866–7884. https://doi.org/10.1007/s12220-020-00555-3.
- M. Hashiguchi, On Conformal Transformations of Finsler Metrics, Kyoto J. Math. 16 (1976), 25–50. https://doi.org/10.1215/kjm/1250522956.
- M.A. JAVALOYES, B.L. SOARES, Geodesics and Jacobi Fields of Pseudo-Finsler Manifolds, Publ. Math. Debr. 87 (2015), 57–78. https://doi.org/10.5486/pmd.2015.7028.
- M.A. Javaloyes, B. Soares, Anisotropic Conformal Invariance of Lightlike Geodesics in Pseudo-Finsler Manifolds, Class. Quantum Grav. 38 (2021), 025002. https://doi.org/10.1088/1361-6382/abc225.
- M.S. Knebelman, Conformal Geometry of Generalized Metric Spaces, Proc. Natl. Acad. Sci. 15 (1929), 376–379. https://doi.org/10.1073/pnas.15.4.376.
- Y. Ichijyo, M. Hashiguchi, On the Condition That a Randers Space Be Conformally Flat, Rep. Fac. Sci. Kagoshima Univ. 22 (1989), 7–14. https://cir.nii.ac.jp/crid/1573950399701121408.
- X. Li, Z. Chang, Exact Solution of Vacuum Field Equation in Finsler Spacetime, Phys. Rev. D 90 (2014), 064049. https://doi.org/10.1103/physrevd.90.064049.
- M. Matsumoto, Finsler Geometry in the 20th-Century, in: Handbook of Finsler Geometry, Kluwer Academic Publishers, 2003.
- Z. Nekouee, S. Narasimhamurthy, S. Pacif, Black Hole Solutions with Constant Ricci Scalar in a Model of Finsler Gravity, J. Cosmol. Astropart. Phys. 2024 (2024), 061. https://doi.org/10.1088/1475-7516/2024/04/061.
- B. Shen, S-closed Conformal Transformations in Finsler Geometry, Differ. Geom. Appl. 58 (2018), 254–263. https://doi.org/10.1016/j.difgeo.2018.02.004.
- Y. Shen, Z. Shen, Introduction to Modern Finsler Geometry, World Scientific, 2016. https://doi.org/10.1142/9726.
- Z. Shen, Two-dimensional Finsler Metrics with Constant Flag Curvature, Manuscripta Math. 109 (2002), 349–366. https://doi.org/10.1007/s00229-002-0311-y.
- S. Tachibana, On Finsler Spaces Which Admit a Concurrent Vector Field, Tensor N.S. 1 (1950), 1–5. https://cir.nii.ac.jp/crid/1573668924681218432.
- G. YANG, X. CHENG, Conformal Invariances of Two-Dimensional Finsler Spaces with Isotropic Main Scalar, Publ. Math. Debr. 81 (2012), 327–340. https://doi.org/10.5486/pmd.2012.5191.
- N.L. Youssef, S.G. Elgendi, A.A. Kotb, E.H. Taha, Anisotropic Conformal Change of Conic Pseudo-Finsler Surfaces, I, Class. Quantum Grav. 41 (2024), 175005. https://doi.org/10.1088/1361-6382/ad636f.
- N.L. Youssef, S.G. Elgendi, A.A. Kotb, E.H. Taha, Anisotropic Conformal Change of Conic Pseudo-Finsler Surfaces, II, arXiv:2503.07842 (2025). http://arxiv.org/abs/2503.07842v1.
- N.L. Youssef, S. Elgendi, E.H. Taha, Semi-concurrent Vector Fields in Finsler Geometry, Differ. Geom. Appl. 65 (2019), 1–15. https://doi.org/10.1016/j.difgeo.2019.02.011.