b∗-I-Open Sets and Their Role in Weaker Forms of Paracompactness
Main Article Content
Abstract
This paper introduces and investigates two new notions of paracompactness in ideal topological spaces: \(b^*\)-\(\mathcal{I}\)-paracompactness and \(b_1^*\)-\(\mathcal{I}\)-paracompactness. These concepts generalize classical paracompactness using \(b^*\)-\(\mathcal{I}\)-open sets and ideal-related refinements. We establish fundamental properties of these spaces, including their preservation under subspaces, finite unions, and continuous mappings. Furthermore, we provide characterizations of these spaces and compare them with existing variants such as \(\beta\)-paracompactness, \(\beta_1\)-paracompactness and \(\mathcal{I}\)-paracompactness, supported by illustrative examples. Our results extend the theory of ideal topological spaces and offer a framework for future studies on generalized covering properties.
Article Details
References
- M.E.A. El-Monsef, E.F. Lashien, A.A. Nasef, On $I$-Open Sets and $I$-Continuous Functions, Kyungpook Math. J. 32 (1992), 21–30.
- M.E.A. El-Monsef, E.F. Lashien, A.A. Nasef, Some Topological Operators via Ideals, Kyungpook Math. J. 32 (1992), 273–284.
- H.H. Aljarrah, $beta_1$-Paracompact Spaces, J. Nonlinear Sci. Appl. 09 (2016), 1728–1734. https://doi.org/10.22436/jnsa.009.04.28.
- K.Y. Al-Zoubi, S-paracompact Spaces, Acta Math. Hung. 110 (2006), 165–174. https://doi.org/10.1007/s10474-006-0001-4.
- K. Al-Zoubi, S. Al-Ghour, On $P_3$-Paracompact Spaces, Int. J. Math. Math. Sci. 2007 (2007), 80697. https://doi.org/10.1155/2007/80697.
- C. Boonpok, P. Raktaow, A. Sama-Ae, Strong $beta$-$mathcal{I}$-Submaximality and $beta$-$mathcal{I}$-Paracompactness in Ideal Topological Spaces, Eur. J. Pure Appl. Math. 18 (2025), 6297. https://doi.org/10.29020/nybg.ejpam.v18i3.6297.
- C. Boonpok, A. Sama-Ae, Characterizations of $delta_1$-$beta_{mathcal{I}}$-Paracompactness Concerning an Ideal, Eur. J. Pure Appl. Math. 18 (2025), 5732. https://doi.org/10.29020/nybg.ejpam.v18i1.5732.
- C. Boonpok, A. Sama-Ae, P. Raktaow, Characterizations of Generalized Paracompactness in Ideal Topological Spaces, Eur. J. Pure Appl. Math. 18 (2025), 5570. https://doi.org/10.29020/nybg.ejpam.v18i1.5570.
- I. Demir, O.B. Ozbakir, On $beta$-Paracompact Spaces, Filomat 27 (2013), 971–976. https://doi.org/10.2298/FIL1306971D.
- J. Dieudonné, Une Généralisation des espaces Compacts, J. Math. Pures Appl. 23 (1944), 65–76. https://www.numdam.org/item/?id=JMPA_1944_9_23__65_0.
- J. Dontchev, M. Ganster, T. Noiri, Unified Operation Approach of Generalized Closed Sets via Topological Ideals, Math. Japon. 49 (1999), 395–402.
- J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
- T.R. Hamlett, D. Rose, D. Jankovic, Paracompactness With Respect to an Ideal, Int. J. Math. Math. Sci. 20 (1997), 433–442. https://www.jstor.org/stable/24896361.
- E. Hatir, On Decompositions of Continuity and Complete Continuity in Ideal Topological Spaces, Eur. J. Pure Appl. Math. 6 (2013), 352–362.
- D. Jankovic, T.R. Hamlet, New Topologies From Old via Ideals, Am. Math. Mon. 97 (1990), 295–310. https://doi.org/10.2307/2324512.
- E.D. Khalimsky, R. Kopperman, P.R. Meyer, Computer Graphics and Connected Topologies on Finite Ordered Sets, Topol. Appl. 36 (1990), 1–17. https://doi.org/10.1016/0166-8641(90)90031-v.
- M. Khan, T. Noiri, Semi-Local Functions in Ideal Topological Spaces, J. Adv. Res. Pure Math. 2 (2010), 36–42. https://api.semanticscholar.org/CorpusID:124939427.
- T.Y. Kong, R. Kopperman, P.R. Meyer, A Topological Approach to Digital Topology, Am. Math. Mon. 98 (1991), 901–917. https://doi.org/10.1080/00029890.1991.12000810.
- K. Kuratowski, Topology I, Panstwowe Wydawnictwo Naukowe, Warszawa, 1933.
- P.Y. Li, Y.K. Song, Some Remarks on S-Paracompact Spaces, Acta Math. Hung. 118 (2007), 345–355. https://doi.org/10.1007/s10474-007-6225-0.
- E. Moore, T. Peters, Computational Topology for Geometric Design and Molecular Design, SIAM, (2005). https://tpeters.engr.uconn.edu/mi03-moore-B4.pdf.
- T. Noiri, Completely Continuous Image of Nearly Paracompact Space, Mat. Vesnik 29 (1977), 59–64. https://eudml.org/doc/260307.
- T. Noiri, A Note on Inverse-Preservations of Regular Open Sets, Publ. Inst. Math. Nouv. Sér. 50 (1984), 99–102.
- A. Qahis, $beta_1$-Paracompact Spaces With Respect to an Ideal, Eur. J. Pure Appl. Math. 12 (2019), 135–145. https://doi.org/10.29020/nybg.ejpam.v12i1.3352.
- D.W. Rosen, T.J. Peters, The Role of Topology in Engineering Design Research, Res. Eng. Des. 8 (1996), 81–98. https://doi.org/10.1007/bf01607863.
- J. Sanabria, E. Rosas, C. Carpintero, M. Salas-Brown, O. García, $S$-Paracompactness in Ideal Topological Spaces, Mat. Vesnik 68 (2016), 192–203.
- N. Sathiyasundari, V. Renukadevi, Paracompactness with Respect to an Ideal, Filomat 27 (2013), 333–339. https://doi.org/10.2298/fil1302333s.
- R. Vaidyanathaswamy, The Localisation Theory in Set-Topology, Proc. Indian Acad. Sci. Sect. A 20 (1944), 51–61. https://doi.org/10.1007/bf03048958.
- E.D. Yildirim, O.B. Ozbakir, A.C. Guler, Some Characterizations of $beta$-Paracompactness in Ideal Topological Space, Eur. J. Pure Appl. Math. 12 (2019), 270–278. https://doi.org/10.29020/nybg.ejpam.v12i2.3394.
- M.I. Zahid, Para-$H$-Closed Spaces, Locally Para $H$-closed Spaces and Their Minimal Topologies, Ph.D. Dissertation, University of Pittsburgh, 1981.