A Second Order NSFD Method for a Malaria Propagation Model

Main Article Content

Calisto B. Marime, Justin B. Munyakazi

Abstract

Standard numerical methods such as the implicit and explicit Euler and the Runge-Kutta methods have been used to approximate solutions of continuous-time transmission dynamics of many diseases. However, their convergence is conditional. Also, they do not always preserve the key features of the continuous-time model. Most times, they require a small time step which may increase the computational complexities especially for a long time horizon. In this paper we construct a nonstandard finite difference (NSFD) method to approximate the solution of a malaria propagation model. NSFD methods do not suffer from the drawback of time step restriction and preserve the physics of the problem under consideration. However their accuracy and rate of convergence remain a point of concern. In the construction of the NSFD scheme that we propose, we consider weights and denominator functions that depend not only on the time step but also iteratively on the state variables of the discrete model. This guarantees a second order convergence as opposed to earlier NSFD schemes which were independent of weights and their denominator functions were solely dependent of the time step. Numerical experiments confirm that the proposed scheme outperforms the first order NSFD in terms of accuracy and rate of convergence.

Article Details

References

  1. L.J. Allen, P. van den Driessche, The Basic Reproduction Number in Some Discrete-Time Epidemic Models, J. Differ. Equ. Appl. 14 (2008), 1127–1147. https://doi.org/10.1080/10236190802332308.
  2. A.J. Arenas, G. González-Parra, B.M. Chen-Charpentier, Construction of Nonstandard Finite Difference Schemes for the SI and SIR Epidemic Models of Fractional Order, Math. Comput. Simul. 121 (2016), 48–63. https://doi.org/10.1016/j.matcom.2015.09.001.
  3. J. Calatayud, M. Jornet, An Improvement of Two Nonstandard Finite Difference Schemes for Two Population Mathematical Models, J. Differ. Equ. Appl. 27 (2021), 422–430. https://doi.org/10.1080/10236198.2021.1903888.
  4. B. Chen, F. Solis, Discretizations of Nonlinear Differential Equations Using Explicit Finite Order Methods, J. Comput. Appl. Math. 90 (1998), 171–183. https://doi.org/10.1016/s0377-0427(98)00017-x.
  5. J. Cresson, F. Pierret, Non Standard Finite Difference Scheme Preserving Dynamical Properties, J. Comput. Appl. Math. 303 (2016), 15–30. https://doi.org/10.1016/j.cam.2016.02.007.
  6. F. Dorner, R. Mosleh, Analysis of Ode Models for Malaria Propagation, Acta Marisiensis. Ser. Technol. 17 (2020), 31–39. https://doi.org/10.2478/amset-2020-0007.
  7. E.P. Doolan, J.J.H. Miller, W. Schilders, Uniform Numerical Methods for Problems with Initial and Boundary Layers, Boole Press, Dublin, 1980.
  8. S. Garba, A. Gumel, A. Hassan, J. Lubuma, Switching From Exact Scheme to Nonstandard Finite Difference Scheme for Linear Delay Differential Equation, Appl. Math. Comput. 258 (2015), 388–403. https://doi.org/10.1016/j.amc.2015.01.088.
  9. M. Gupta, J.M. Slezak, F. Alalhareth, S. Roy, H.V. Kojouharov, Second-order Nonstandard Explicit Euler Method, AIP Conf. Proc. 2302 (2020), 110003. https://doi.org/10.1063/5.0033534.
  10. M.T. Hoang, A Novel Second-Order Nonstandard Finite Difference Method for Solving One-Dimensional Autonomous Dynamical Systems, Commun. Nonlinear Sci. Numer. Simul. 114 (2022), 106654. https://doi.org/10.1016/j.cnsns.2022.106654.
  11. M.T. Hoang, Dynamical Analysis of a Generalized Hepatitis B Epidemic Model and Its Dynamically Consistent Discrete Model, Math. Comput. Simul. 205 (2023), 291–314. https://doi.org/10.1016/j.matcom.2022.10.006.
  12. M.T. Hoang, A Novel Second-Order Nonstandard Finite Difference Method Preserving Dynamical Properties of a General Single-Species Model, Int. J. Comput. Math. 100 (2023), 2047–2062. https://doi.org/10.1080/00207160.2023.2248304.
  13. M.T. Hoang, A Class of Second-Order and Dynamically Consistent Nonstandard Finite Difference Schemes for Nonlinear Volterra’s Population Growth Model, Comput. Appl. Math. 42 (2023), 85. https://doi.org/10.1007/s40314-023-02230-z.
  14. M.T. Hoang, M. Ehrhardt, A Second-Order Nonstandard Finite Difference Method for a General Rosenzweig-Macarthur Predator-Prey Model, J. Comput. Appl. Math. 444 (2024), 115752. https://doi.org/10.1016/j.cam.2024.115752.
  15. J. Martín-Vaquero, A. Martín del Rey, A. Encinas, J. Hernández Guillén, A. Queiruga-Dios, G. Rodríguez Sánchez, Higher-order Nonstandard Finite Difference Schemes for a Mseir Model for a Malware Propagation, J. Comput. Appl. Math. 317 (2017), 146–156. https://doi.org/10.1016/j.cam.2016.11.044.
  16. J. Martín-Vaquero, A. Queiruga-Dios, A. Martín del Rey, A. Encinas, J. Hernández Guillén, G. Rodríguez Sánchez, Variable Step Length Algorithms with High-Order Extrapolated Non-Standard Finite Difference Schemes for a Seir Model, J. Comput. Appl. Math. 330 (2018), 848–854. https://doi.org/10.1016/j.cam.2017.03.031.
  17. M.M. Khalsaraei, A. Shokri, S. Noeiaghdam, M. Molayi, Nonstandard Finite Difference Schemes for an SIR Epidemic Model, Mathematics 9 (2021), 3082. https://doi.org/10.3390/math9233082.
  18. R.E. Mickens, Nonstandard Finite Difference Models of Differential Equations, World Scientific, 1994.
  19. R.E. Mickens, Discretizations of Nonlinear Differential Equations Using Explicit Nonstandard Methods, J. Comput. Appl. Math. 110 (1999), 181–185. https://doi.org/10.1016/s0377-0427(99)00233-2.
  20. R.E. Mickens, Applications of Nonstandard Finite Difference Schemes, World Scientific, Singapore, 2000.
  21. R.E. Mickens, T.M. Washington, NSFD Discretizations of Interacting Population Models Satisfying Conservation Laws, Comput. Math. Appl. 66 (2013), 2307–2316. https://doi.org/10.1016/j.camwa.2013.06.011.
  22. R.E. Mickens, Nonstandard Finite Difference Schemes: Methodology and Applications, World Scientific, 2020.
  23. R. Mosleh, Positivity Preserving Explicit Discrete Model for Malaria Propagation, Ann. Univ. Sci. Budapest. Sect. Math. 63 (2020), 123–133.
  24. S. Olaniyi, O. Obabiyi, Mathematical Model for Malaria Transmission Dynamics in Human and Mosquito Populations with Nonlinear Forces of Infection, Int. J. Pure Appl. Math. 88 (2013), 125–156. https://doi.org/10.12732/ijpam.v88i1.10.
  25. D.T. Wood, H.V. Kojouharov, A Class of Nonstandard Numerical Methods for Autonomous Dynamical Systems, Appl. Math. Lett. 50 (2015), 78–82. https://doi.org/10.1016/j.aml.2015.06.008.