On Neutrosophic e-Compactness
Main Article Content
Abstract
In the exploration of Neutrosophic fine spaces, this article investigates and study a novel concept known as Neutrosophic fine open sets (NfOS). After giving the fundamental concepts of Neutrosophic fine open sets (NfOS) in topological spaces, we present the properties of these sets, the study obtained and analyzes both Neutrosophic fine open and closed sets within the context of Neutrosophic fine spaces. The article establishes fundamental definitions, accompanied by illustrative real time example, to provide a comprehensive understanding of the newly introduced sets. Furthermore, the exploration extends to defining and examining key concepts such as Neutrosophic fine continuity, Neutrosophic fine irresoluteness, and Neutrosophic fine irresolute homeomorphism. This progression aims to contribute to the broader comprehension and application of Neutrosophic fine spaces in topological contexts.
Article Details
References
- A.A. Salama, S. Broumi, S.A. Alblow, Introduction to Neutrosophic Topological Spatial Region, Possible Application to Gis Topological Rules, Int. J. Inf. Eng. Electron. Bus. 6 (2014), 15–21. https://doi.org/10.5815/ijieeb.2014.06.02.
- R. Dhavaseelan, S. Jafari. Generalized Neutrosophic Closed Sets, New Trends Neutrosophic Theory Appl. II (2018), 1037–1044.
- A. Acikgoz, F. Esenbel, A Study on Connectedness in Neutrosophic Topological Spaces, AIP Conf. Proc. 2334 (2021), 020003. https://doi.org/10.1063/5.0042372.
- A. Vadivel, C.J. Sundar, Neutrosophic $delta$-Open Maps and Neutrosophic $delta$-Closed Maps, Int. J. Neutrosophic Sci. 13 (2021), 66–74. https://doi.org/10.54216/ijns.130203.
- A. Ghareeb, W.F. Al-Omeri, New Degrees for Functions in (L, M)-Fuzzy Topological Spaces Based on (L, M)-Fuzzy Semiopen and (L, M)-Fuzzy Preopen Operators, J. Intell. Fuzzy Syst. 36 (2018), 787–803. https://doi.org/10.3233/jifs-18251.
- A. Vadivel, P. Thangaraja, C.J. Sundar, Neutrosophic e-Continuous Maps and Neutrosophic e-Irresolute Maps, Turk. J. Comput. Math. Educ. 12 (2021), 369–375. https://doi.org/10.17762/turcomat.v12i1s.1858.
- A. Vadivel, M. Seenivasan, C. John Sundar, An Introduction to $delta$-Open Sets in a Neutrosophic Topological Spaces, J. Phys.: Conf. Ser. 1724 (2021), 012011. https://doi.org/10.1088/1742-6596/1724/1/012011.
- A. Vadivel, P. Thangaraja, C. John Sundar, Some Spaces in Neutrosophic e-Open Sets, Springer, Cham, 2022. https://doi.org/10.1007/978-3-031-19082-7_14.
- C. Maheswari, S. Chandrasekar, Neutrosophic gb-Closed Sets and Neutrosophic gb-Continuity, Neutrosophic Sets Syst. 29 (2019), 89–100.
- D. Çoker, An Introduction to Intuitionistic Fuzzy Topological Spaces, Fuzzy Sets Syst. 88 (1997), 81–89. https://doi.org/10.1016/s0165-0114(96)00076-0.
- S. Dey, G.C. Ray, Covering Properties in Neutrosophic Topological Spaces, Neutrosophic Sets Syst. 51 (2022), 525–537.
- E. Ekici, On e-Open Sets, DP*-Sets and DPE*-Sets and Decompositions of Continuity, Arab. J. Sci. Eng. 33 (2008), 269–282.
- F. Smarandache, Neutrosophic Set is a Generalization of Intuitionistic Fuzzy Set, Inconsistent Intuitionistic Fuzzy Set (Picture Fuzzy Set, Ternary Fuzzy Set), Pythagorean Fuzzy Set, Spherical Fuzzy Set, and q-Rung Orthopair Fuzzy Set, while Neutrosophication is a Generalization of Regret Theory, Grey System Theory, and Three-Ways Decision (Revisited), J. New Theory 29 (2019), 1–31.
- F. Smarandache, Neutrosophic Probability, Set, And Logic (First Version), in: Florentin Smarandache: "Collected Papers", vol. III. Oradea (Romania): Abaddaba, (2000). https://doi.org/10.5281/ZENODO.57726.
- K. Liu, W. Shi, Quantitative Fuzzy Topological Relations of Spatial Objects by Induced Fuzzy Topology, Int. J. Appl. Earth Obs. Geoinf. 11 (2009), 38–45. https://doi.org/10.1016/j.jag.2008.06.001.
- M. Parimala, M. Karthika, F. Smarandache, S. Broumi, On $alphaomega$-Closed Sets and Its Connectedness in Terms of Neutrosophic Topological Spaces, Int. J. Neutrosophic Sci. 2 (2020), 82–88. https://doi.org/10.54216/ijns.020204.
- M.A. Al Shumrani, F. Smarandache, Introduction to Non-Standard Neutrosophic Topology, Symmetry 11 (2019), 706. https://doi.org/10.3390/sym11050706.
- M. Azab Abd-Allah, K. El-Saady, A. Ghareeb, $(r, s)$-Fuzzy $f$-Open Sets and $(r, s)$-Fuzzy $f$-Closed Spaces, Chaos Solitons Fractals 42 (2009), 649–656. https://doi.org/10.1016/j.chaos.2009.01.031.
- P. Basker, B. Said, $NPsi^sharp_0 alpha$ and $NPsi^sharp_1 alpha$-Spaces in Neutrosophic Topological Spaces, Int. J. Neutrosophic Sci. 16 (2021), 09–15. https://doi.org/10.54216/ijns.160101.
- G.C. Ray, S. Dey, Relation of Quasi-coincidence for Neutrosophic Sets, Neutrosophic Sets Syst. 46 (2021), 402–415.
- S. Saha, Fuzzy $delta$-Continuous Mappings, J. Math. Anal. Appl. 126 (1987), 130–142. https://doi.org/10.1016/0022-247x(87)90081-3.
- T.K. Mondal, S. Samanta, On Intuitionistic Gradation of Openness, Fuzzy Sets Syst. 131 (2002), 323–336. https://doi.org/10.1016/s0165-0114(01)00235-4.
- V. Seenivasan, K. Kamala, Fuzzy e-Continuity and Fuzzy e-Open Sets, Ann. Fuzzy Math. Inform. 8 (2014), 141–148.
- A. admin, A. Hazaymeh, On the Topological Spaces of Neutrosophic Real Intervals, Int. J. Neutrosophic Sci. 25 (2025), 130–136. https://doi.org/10.54216/ijns.250111.
- A. Vadivel, P. Thangaraja, C.J. Sundar, Neutrosophic E-Open Maps, Neutrosophic E-Closed Maps and Neutrosophic E-Homeomorphisms in Neutrosophic Topological Spaces, AIP Conf. Proc. 2364 (2021), 020016. https://doi.org/10.1063/5.0062880.
- W. Al-Omeri, F. Smarandache, New Neutrosophic Sets via Neutrosophic Topological Spaces, in: Neutrosophic Operational Research, Smarandache, Brussels, Belgium, pp. 189–209, (2017).
- W.F. Al-Omeri, The Property (P) and New Fixed Point Results on Ordered Metric Spaces in Neutrosophic Theory, Neutrosophic Sets Syst. 56 (2023), 261–275. https://doi.org/10.5281/ZENODO.8194801.
- W. AL-Omeri, Fuzzy Totally Continuous Mappings Based on Fuzzy $alpha ^m$-Open Sets in $check{s}ostaacute{k}s$ Sense, Int. J. Appl. Comput. Math. 10 (2024), 73. https://doi.org/10.1007/s40819-024-01710-y.
- W.F. Al-Omeri, S. Jafari, F. Smarandache, Neutrosophic Fixed Point Theorems and Cone Metric Spaces, Neutrosophic Sets Syst. 31(2020), 250–265. https://doi.org/10.5281/ZENODO.3640600.
- W.F. Al-Omeri, M. Kaviyarasu, Study on Neutrosophic Graph with Application on Earthquake Response Center in Japan, Symmetry 16 (2024), 743. https://doi.org/10.3390/sym16060743.
- W.F. Al-Omeri, Neutrosophic $g^*$-Closed Sets in Neutrosophic Topological Spaces, Int. J. Neutrosophic Sci. 20 (2023), 210–222. https://doi.org/10.54216/ijns.200417.
- R. Hatamleh, W. Al-Omeri, M.A. A. Al-Qudah, Neutrosophic Regular and Normal Subspaces in Neutrosophic Topological Spaces, Int. J. Neutrosophic Sci. 26 (2025), 50–56. https://doi.org/10.54216/ijns.260406.