Non-Null Canal Surfaces with Bishop Frame in Minkowski 3-Space
Main Article Content
Abstract
In this paper, we investigate spacelike and timelike canal surfaces foliated by S12 pseudo spheres in Minkowski 3-space based on the Bishop frame. Various types of canal surfaces, including Weingarten, linear Weingarten, developable, and minimal forms, are categorized to highlight the singular points and the geometric properties of such surfaces. Our analysis sheds light on the intrinsic properties of these surfaces and contributes to the understanding of their behavior within the context of Minkowski geometry. Finally, we present a computational example as a practical validation of our theoretical findings.
Article Details
References
- E. Abbena, S. Salamon, A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica, CRC Press, (2006).
- Z. Xu, R. Feng, J. Sun, Analytic and Algebraic Properties of Canal Surfaces, J. Comput. Appl. Math. 195 (2006), 220–228. https://doi.org/10.1016/j.cam.2005.08.002.
- Y.H. Kim, H. Liu, J. Qian, Some Characterizations of Canal Surfaces, Bull. Korean Math. Soc. 53 (2016), 461–477. https://doi.org/10.4134/bkms.2016.53.2.461.
- F. Dou{g}an, Y. Yayli, On the Curvatures of Tubular Surface With Bishop Frame, Commun. Fac. Sci. Univ. Ank. Ser. A1 60 (2011), 59–69.
- B. Bulca, K. Arslan, B. Bayram, G. Öztürk, Canal Surfaces in 4-Dimensional Euclidean Space, Int. J. Optim. Control.: Theor. Appl. 7 (2016), 83–89. https://doi.org/10.11121/ijocta.01.2017.00338.
- H.S. Abdel-Aziz,M. Khalifa Saad, Weingarten Timelike Tube Surfaces around a Spacelike Curve, Int. J. Math. Anal. 5 (2011), 1225–1236.
- M. Khalifa Saad, N. Yüksel, N. Oğraş, F. Alghamdi, A.A. Abdel-Salam, Geometry of Tubular Surfaces and Their Focal Surfaces in Euclidean 3-Space, AIMS Math. 9 (2024), 12479–12493. https://doi.org/10.3934/math.2024610.
- A.A. Abdel-Salam, M.I. Elashiry, M. Khalifa Saad, Tubular Surface Generated by a Curve Lying on a Regular Surface and Its Characterizations, AIMS Math. 9 (2024), 12170–12187. https://doi.org/10.3934/math.2024594.
- M.K. Karacan, H. Es, Y. Yayli, Singular Points of Tubular Surfaces in Minkowski 3-Space, Sarajev. J. Math. 2 (2024), 73–82. https://doi.org/10.5644/sjm.02.1.08.
- J. Qian, M. Su, X. Fu, S.D. Jung, Geometric Characterizations of Canal Surfaces in Minkowski 3-Space II, Mathematics 7 (2019), 703. https://doi.org/10.3390/math7080703.
- R.L. Bishop, There Is More Than One Way to Frame a Curve, Am. Math. Mon. 82 (1975), 246–251. https://doi.org/10.1080/00029890.1975.11993807.
- M. Özdemir, A.A. Ergin, Parallel Frames of Non-Lightlike Curves, Mo. J. Math. Sci. 20 (2008), 127–137. https://doi.org/10.35834/mjms/1316032813.
- N. Yüksel, The Ruled Surfaces According to Bishop Frame in Minkowski 3-Space, Abstr. Appl. Anal. 2013 (2013), 810640. https://doi.org/10.1155/2013/810640.
- N. Y"{u}ksel, Y. Tuncer, M.K. Karacan, Tabular Surfaces with Bishop Frame of Weingarten Types in Euclidean 3-Space, Acta Univ. Apulensis 27 (2011), 39–50.
- E. Damar, N. Yuksel, A.T. Vanli, The Ruled Surfaces According to Type-2 Bishop Frame in $E^3$, Int. Math. Forum 12 (2017), 133–143. https://doi.org/10.12988/imf.2017.610131.
- S. Şenyurt, D. Canli, K.H. Ayvaci, Smarandache Ruled Surfaces According to Bishop Frame in E3, arXiv:2112.05530 (2021). http://arxiv.org/abs/2112.05530v1.
- E. Solouma, M. Abdelkawy, Family of Ruled Surfaces Generated by Equiform Bishop Spherical Image in Minkowski 3-Space, AIMS Math. 8 (2023), 4372–4389. https://doi.org/10.3934/math.2023218.
- M.A. Soliman, W.M. Mahmoud, E.M. Solouma, M. Bary, The New Study of Some Characterization of Canal Surfaces with Weingarten and Linear Weingarten Types According to Bishop Frame, J. Egypt. Math. Soc. 27 (2019), 26. https://doi.org/10.1186/s42787-019-0032-y.
- R. López, Linear Weingarten Surfaces in Euclidean and Hyperbolic Space, arXiv:0906.3302 (2009). http://arxiv.org/abs/0906.3302v1.