Uniqueness of Fixed Points for Multi-Valued Mappings in Orthogonal Ultrametric Spaces

Main Article Content

Balaanandhan Radhakrishnan, Uma Jayaraman, Kandhasamy Tamilvanan, Khaled Suwais, Nabil Mlaiki

Abstract

This research aims to prove that multi-valued mappings in orthogonal ultrametric space (O-UMS) have only one fixed point (FP). We achieve this result using a variety of contraction conditions, without assuming spherical completeness. This allows us to state fixed-point problems exactly. Additionally, we explore the implications of these results for integral equations and nonlinear fractional integral-differential equations. By utilizing these contractions, our research contributes to a better understanding of O-UMS.

Article Details

References

  1. C. Alaca, M. Erden~Ege, C. Park, Fixed Point Results for Modular Ultrametric Spaces, J. Comput. Anal. Appl. 20 (2016), 1259–1267.
  2. Y. Almalki, B. Radhakrishnan, U. Jayaraman, K. Tamilvanan, Some Common Fixed Point Results in Modular Ultrametric Space Using Various Contractions and Their Application to Well-Posedness, Mathematics 11 (2023), 4077. https://doi.org/10.3390/math11194077.
  3. A. Amini-Harandi, Endpoints of Set-Valued Contractions in Metric Spaces, Nonlinear Anal.: Theory Methods Appl. 72 (2010), 132–134. https://doi.org/10.1016/j.na.2009.06.074.
  4. L. Ben Aoua, V. Parvaneh, T. Oussaeif, L. Guran, G.H. Laid, C. Park, Common Fixed Point Theorems in Intuitionistic Fuzzy Metric Spaces with an Application for Volterra Integral Equations, Commun. Nonlinear Sci. Numer. Simul. 127 (2023), 107524. https://doi.org/10.1016/j.cnsns.2023.107524.
  5. J. Aubin, J. Siegel, Fixed Points and Stationary Points of Dissipative Multivalued Maps, Proc. Am. Math. Soc. 78 (1980), 391–398. https://doi.org/10.1090/s0002-9939-1980-0553382-1.
  6. H. Aydi, M. Bota, E. Karapınar, S. Mitrović, A Fixed Point Theorem for Set-Valued Quasi-Contractions in B-Metric Spaces, Fixed Point Theory Appl. 2012 (2012), 88. https://doi.org/10.1186/1687-1812-2012-88.
  7. D. Baleanu, S. Rezapour, H. Mohammadi, Some Existence Results on Nonlinear Fractional Differential Equations, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 371 (2013), 20120144. https://doi.org/10.1098/rsta.2012.0144.
  8. S. Banach, Sur les Opérations dans les Ensembles Abstraits et Leur Application aux Équations Intégrales, Fundam. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
  9. I. Beg, G. Mani, A.J. Gnanaprakasam, Fixed Point of Orthogonal $F$-Suzuki Contraction Mapping on $O$-Complete $b$-Metric Spaces with Applications, J. Funct. Spaces 2021 (2021), 6692112. https://doi.org/10.1155/2021/6692112.
  10. M. Boriceanu, M. Bota, A. Petruşel, Multivalued Fractals in $b$-Metric Spaces, Centr. Eur. J. Math. 8 (2010), 367–377. https://doi.org/10.2478/s11533-010-0009-4.
  11. L. Chen, L. Gao, D. Chen, Fixed Point Theorems of Mean Nonexpansive Set-Valued Mappings in Banach Spaces, J. Fixed Point Theory Appl. 19 (2017), 2129–2143. https://doi.org/10.1007/s11784-017-0401-9.
  12. L. Chen, N. Yang, Y. Zhao, Z. Ma, Fixed Point Theorems for Set-Valued G-Contractions in a Graphical Convex Metric Space with Applications, J. Fixed Point Theory Appl. 22 (2020), 88. https://doi.org/10.1007/s11784-020-00828-y.
  13. L. Chen, J. Zou, Y. Zhao, M. Zhang, Iterative Approximation of Common Attractive Points of $(alpha ,beta )$-Generalized Hybrid Set-Valued Mappings, J. Fixed Point Theory Appl. 21 (2019), 58. https://doi.org/10.1007/s11784-019-0692-0.
  14. N. Hussain, P. Salimi, A. Latif, Fixed Point Results for Single and Set-Valued $alpha-eta-psi$-Contractive Mappings, Fixed Point Theory Appl. 2013 (2013), 212. https://doi.org/10.1186/1687-1812-2013-212.
  15. L. Gajić, On Ultrametric Space, Novi Sad J. Math. 31 (2001), 69–71.
  16. A.J. Gnanaprakasam, G. Mani, J.R. Lee, C. Park, Solving a Nonlinear Integral Equation via Orthogonal Metric Space, AIMS Math. 7 (2021), 1198–1210. https://doi.org/10.3934/math.2022070.
  17. A.J. Gnanaprakasam, G. Mani, V. Parvaneh, H. Aydi, Solving a Nonlinear Fredholm Integral Equation via an Orthogonal Metric, Adv. Math. Phys. 2021 (2021), 1202527. https://doi.org/10.1155/2021/1202527.
  18. A.J. Gnanaprakasam, G. Nallaselli, A.U. Haq, G. Mani, I.A. Baloch, K. Nonlaopon, Common Fixed-Points Technique for the Existence of a Solution to Fractional Integro-Differential Equations via Orthogonal Branciari Metric Spaces, Symmetry 14 (2022), 1859. https://doi.org/10.3390/sym14091859.
  19. M. Gordji, M. Rameani, M. De La Sen, Y.J. Cho, On Orthogonal Sets and Banach Fixed Point Theorem, Fixed Point Theory 18 (2017), 569–578. https://doi.org/10.24193/fpt-ro.2017.2.45.
  20. F. Khojasteh, V. Rakočević, Some New Common Fixed Point Results for Generalized Contractive Multi-Valued Non-Self-Mappings, Appl. Math. Lett. 25 (2012), 287–293. https://doi.org/10.1016/j.aml.2011.07.021.
  21. W. Kirk, N. Shahzad, Some Fixed Point Results in Ultrametric Spaces, Topol. Appl. 159 (2012), 3327–3334. https://doi.org/10.1016/j.topol.2012.07.016.
  22. H. Mamghaderi, H. Parvaneh Masiha, M. Hosseini, Some Fixed Point Theorems for Single Valued Strongly Contractive Mappings in Partially Ordered Ultrametric and Non-Archimedean Normed Spaces, Turk. J. Math. 41 (2017), 9–14. https://doi.org/10.3906/mat-1412-3.
  23. J.T. Markin, A Fixed Point Theorem for Set Valued Mappings, Bull. Am. Math. Soc. 74 (1968), 639–640. https://doi.org/10.1090/s0002-9904-1968-11971-8.
  24. S. Nadler, Multi-valued Contraction Mappings, Pac. J. Math. 30 (1969), 475–488. https://doi.org/10.2140/pjm.1969.30.475.
  25. B. Panyanak, Approximating Endpoints of Multi-Valued Nonexpansive Mappings in Banach Spaces, J. Fixed Point Theory Appl. 20 (2018), 77. https://doi.org/10.1007/s11784-018-0564-z.
  26. M. Pitchaimani, D. Ramesh Kumar, On Nadler Type Results in Ultrametric Spaces with Application to Well-Posedness, Asian-Eur. J. Math. 10 (2017), 1750073. https://doi.org/10.1142/s1793557117500735.
  27. D. Ramesh Kumar, M. Pitchaimani, Set-valued Contraction Mappings of Prešić-Reich Type in Ultrametric Spaces, Asian-Eur. J. Math. 10 (2017), 1750065. https://doi.org/10.1142/s1793557117500656.
  28. K.P.R. Rao, G.N.V. Kishore, T.R. Rao, Some Coincidence Point Theorems in Ultra Metric Spaces, Int. J. Math. Anal. 1 (2007), 897–902.
  29. S. Reich, Fixed Points of Contractive Functions, Boll. Un. Mat. Ital. 5 (1972), 26–42.
  30. N. Shahzad, H. Zegeye, On Mann and Ishikawa Iteration Schemes for Multi-Valued Maps in Banach Spaces, Nonlinear Anal.: Theory Methods Appl. 71 (2009), 838–844. https://doi.org/10.1016/j.na.2008.10.112.
  31. R.K. Sharma, S. Chandok, Multivalued Problems, Orthogonal Mappings, and Fractional Integro-Differential Equation, J. Math. 2020 (2020), 6615478. https://doi.org/10.1155/2020/6615478.
  32. A.C.M. van Rooij, Non-Archimedean Functional Analysis, Dekker, New York, 1978.