Numerical Investigation of Radiative Flow of Cu-Al2O3/H2O Hybrid Nanofluid over a Moving Flat Plate
Main Article Content
Abstract
Researchers have shown interest in how hybrid nanoparticles can improve heat transfer, promoting further investigation into the regular fluid. This study examines the flow of hybrid nanoliquid flow with heat transfer on a moving plate, with a focus on Joule heating. Additionally, the aligned magnetic effect is incorporated for the analysis of Copper and Aluminum oxide nanoparticles combined with water as a base fluid. The PDE’s complexity was reduced via a similarity transformation into an ODE system that was numerically solved for different values of governing parameters using the Keller box method. There is a unique solution available against λ>0, while two solutions are available for λC<λ≤0. Additionally, it was observed that the magnetic factor enhances the energy transmission performance and increases the critical value, while no impact of the Eckert number. The outcomes of this problem are novel and innovative, with numerous practical applications in industry and engineering.
Article Details
References
- S.U.S. Choi, D.A. Singer, H.P. Wang, Developments and Applications of Non-Newtonian Flows, in: 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, California, 1995.
- J. Prakash, D. Tripathi, A.K. Tiwari, S.M. Sait, R. Ellahi, Peristaltic Pumping of Nanofluids Through a Tapered Channel in a Porous Environment: Applications in Blood Flow, Symmetry 11 (2019), 868. https://doi.org/10.3390/sym11070868.
- G. Huminic, A. Huminic, Entropy Generation of Nanofluid and Hybrid Nanofluid Flow in Thermal Systems: A Review, J. Mol. Liq. 302 (2020), 112533. https://doi.org/10.1016/j.molliq.2020.112533.
- M. Molana, R. Ghasemiasl, T. Armaghani, A Different Look at the Effect of Temperature on the Nanofluids Thermal Conductivity: Focus on the Experimental-Based Models, J. Therm. Anal. Calorim. 147 (2021), 4553-4577. https://doi.org/10.1007/s10973-021-10836-w.
- E.H. Aly, I. Pop, Mhd Flow and Heat Transfer Near Stagnation Point Over a Stretching/shrinking Surface with Partial Slip and Viscous Dissipation: Hybrid Nanofluid Versus Nanofluid, Powder Technol. 367 (2020), 192-205. https://doi.org/10.1016/j.powtec.2020.03.030.
- N.A.L. Aladdin, N. Bachok, I. Pop, Cu-al2o3/water Hybrid Nanofluid Flow Over a Permeable Moving Surface in Presence of Hydromagnetic and Suction Effects, Alex. Eng. J. 59 (2020), 657-666. https://doi.org/10.1016/j.aej.2020.01.028.
- N.A. Zainal, R. Nazar, K. Naganthran, I. Pop, Mhd Flow and Heat Transfer of Hybrid Nanofluid Over a Permeable Moving Surface in the Presence of Thermal Radiation, Int. J. Numer. Methods Heat Fluid Flow 31 (2020), 858-879. https://doi.org/10.1108/hff-03-2020-0126.
- B.S. Goud, J.V. Madhu, M.R. Shekar, Mhd Viscous Dissipative Fluid Flows in a Channel with a Stretching and Porous Plate with Radiation Effect, Int. J. Innov. Technol. Explor. Eng. 8 (2019), 1877-1882. https://doi.org/10.35940/ijitee.k2086.0981119.
- A.J. Chamkha, A.S. Dogonchi, D.D. Ganji, Magneto-hydrodynamic Flow and Heat Transfer of a Hybrid Nanofluid in a Rotating System Among Two Surfaces in the Presence of Thermal Radiation and Joule Heating, AIP Adv. 9 (2019), 025103. https://doi.org/10.1063/1.5086247.
- S. Reza-E-Rabbi, M.S. Khan, S. Arifuzzaman, S. Islam, P. Biswas, B. Rana, A. Al-Mamun, T. Hayat, S.F. Ahmmed, Numerical Simulation of a Non-Linear Nanofluidic Model to Characterise the Mhd Chemically Reactive Flow Past an Inclined Stretching Surface, Partial. Differ. Equ. Appl. Math. 5 (2022), 100332. https://doi.org/10.1016/j.padiff.2022.100332.
- S. Shaw, F. Mabood, T. Muhammad, M.K. Nayak, M. Alghamdi, Numerical Simulation for Entropy Optimized Nonlinear Radiative Flow of GO-Al₂O₃ Magneto Nanomaterials with Autocatalysis Chemical Reaction, Numer. Methods Partial. Differ. Equ. 38 (2022), 329–358. https://doi.org/10.1002/num.22623.
- A. Wakif, A. Chamkha, T. Thumma, I.L. Animasaun, R. Sehaqui, Thermal Radiation and Surface Roughness Effects on the Thermo-Magneto-Hydrodynamic Stability of Alumina–Copper Oxide Hybrid Nanofluids Utilizing the Generalized Buongiorno’s Nanofluid Model, J. Therm. Anal. Calorim. 143 (2020), 1201-1220. https://doi.org/10.1007/s10973-020-09488-z.
- L. Benos, U. Mahabaleshwar, P. Sakanaka, I. Sarris, Thermal Analysis of the Unsteady Sheet Stretching Subject to Slip and Magnetohydrodynamic Effects, Therm. Sci. Eng. Prog. 13 (2019), 100367. https://doi.org/10.1016/j.tsep.2019.100367.
- M. Ibrahim, T. Saeed, S. Zeb, Numerical Simulation of Time-Dependent Two-Dimensional Viscous Fluid Flow with Thermal Radiation, Eur. Phys. J. Plus 137 (2022), 609. https://doi.org/10.1140/epjp/s13360-022-02813-5.
- S. Rao, P. Deka, A Numerical Solution Using Efdm for Unsteady Mhd Radiative Casson Nanofluid Flow Over a Porous Stretching Sheet with Stability Analysis, Heat Transf. 51 (2022), 8020-8042. https://doi.org/10.1002/htj.22679.
- K. Anantha Kumar, V. Sugunamma, N. Sandeep, Effect of Thermal Radiation on Mhd Casson Fluid Flow Over an Exponentially Stretching Curved Sheet, J. Therm. Anal. Calorim. 140 (2019), 2377-2385. https://doi.org/10.1007/s10973-019-08977-0.
- N.F. Okechi, S. Asghar, D. Charreh, Magnetohydrodynamic Flow Through a Wavy Curved Channel, AIP Adv. 10 (2020), 035114. https://doi.org/10.1063/1.5142214.
- I. Waini, A. Ishak, I. Pop, Hybrid Nanofluid Flow and Heat Transfer Over a Permeable Biaxial Stretching/shrinking Sheet, Int. J. Numer. Methods Heat Fluid Flow 30 (2019), 3497-3513. https://doi.org/10.1108/hff-07-2019-0557.
- R.J. Punith Gowda, R. Naveen Kumar, A.M. Jyothi, B.C. Prasannakumara, I.E. Sarris, Impact of Binary Chemical Reaction and Activation Energy on Heat and Mass Transfer of Marangoni Driven Boundary Layer Flow of a Non-Newtonian Nanofluid, Processes 9 (2021), 702. https://doi.org/10.3390/pr9040702.
- E.H. Aly, M. Benlahsen, M. Guedda, Similarity Solutions of a Mhd Boundary-Layer Flow Past a Continuous Moving Surface, Int. J. Eng. Sci. 45 (2007), 486-503. https://doi.org/10.1016/j.ijengsci.2007.04.016.
- S.P.A. Devi, S.S.U. Devi, Numerical Investigation of Hydromagnetic Hybrid Cu–Al₂O₃/Water Nanofluid Flow Over a Permeable Stretching Sheet with Suction, Int. J. Nonlinear Sci. Numer. Simul. 17 (2016), 249-257. https://doi.org/10.1515/ijnsns-2016-0037.
- B. Takabi, S. Salehi, Augmentation of the Heat Transfer Performance of a Sinusoidal Corrugated Enclosure by Employing Hybrid Nanofluid, Adv. Mech. Eng. 6 (2014), 147059. https://doi.org/10.1155/2014/147059.
- H.F. Oztop, E. Abu-Nada, Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled with Nanofluids, Int. J. Heat Fluid Flow 29 (2008), 1326-1336. https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009.
- P. Weidman, D. Kubitschek, A. Davis, The Effect of Transpiration on Self-Similar Boundary Layer Flow Over Moving Surfaces, Int. J. Eng. Sci. 44 (2006), 730-737. https://doi.org/10.1016/j.ijengsci.2006.04.005.
- A. Mohd Rohni, S. Ahmad, I. Pop, Boundary Layer Flow Over a Moving Surface in a Nanofluid Beneath a Uniform Free Stream, Int. J. Numer. Methods Heat Fluid Flow 21 (2011), 828-846. https://doi.org/10.1108/09615531111162819.
- N.S. Khashi'ie, N.M. Arifin, I. Pop, Magnetohydrodynamics (mhd) Boundary Layer Flow of Hybrid Nanofluid Over a Moving Plate with Joule Heating, Alex. Eng. J. 61 (2022), 1938-1945. https://doi.org/10.1016/j.aej.2021.07.032.