Stability in Locally Convex Lattice Cones

Main Article Content

Ehsan Movahednia, Manuel De la Sen

Abstract

In this work, we start by recalling the essential definitions of locally convex lattice cones and the concept of stability for functional equations. Based on these preliminary notions, we establish a main theorem that provides sufficient conditions for stability within the framework of locally convex cones. This theorem generalizes classical stability results and offers a deeper understanding of the stability behavior of mappings between locally convex cones under approximate conditions.

Article Details

References

  1. S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.
  2. D.H. Hyers, On the Stability of the Linear Functional Equation, Proc. Natl. Acad. Sci. 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222.
  3. T. AOKI, On the Stability of the Linear Transformation in Banach Spaces., J. Math. Soc. Jpn. 2 (1950), 64–66. https://doi.org/10.2969/jmsj/00210064.
  4. T.M. Rassias, On the Stability of the Linear Mapping in Banach Spaces, Proc. Am. Math. Soc. 72 (1978), 297–300. https://doi.org/10.2307/2042795.
  5. G.L. Forti, Hyers—Ulam stability of functional equations in several variables, in: Aggregating clones, colors, equations, iterates, numbers, and tiles, Birkhäuser, Basel, 1995: pp. 143–190. https://doi.org/10.1007/978-3-0348-9096-0_9.
  6. P. Gavruta, A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings, J. Math. Anal. Appl. 184 (1994), 431–436. https://doi.org/10.1006/jmaa.1994.1211.
  7. S. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2004. https://doi.org/10.1007/978-1-4419-9637-4.
  8. P. Kannappan, Functional Equations and Inequalities with Applications, Springer, Boston, 2009. https://doi.org/10.1007/978-0-387-89492-8.
  9. S.M.S.M. Mosadegh, E. Movahednia, Stability of Preserving Lattice Cubic Functional Equation in Menger Probabilistic Normed Riesz Spaces, J. Fixed Point Theory Appl. 20 (2018), 34–43. https://doi.org/10.1007/s11784-018-0513-x.
  10. C. Park, M. Eshaghi Gordji, R. Saadati, Random Homomorphisms and Random Derivations in Random Normed Algebras via Fixed Point Method, J. Inequal. Appl. 2012 (2012), 194. https://doi.org/10.1186/1029-242x-2012-194.
  11. N. Salehi, S.M.S. Modarres, A Fixed Point Method for Stability of Involutions on Multi-Banach Algebra, J. Fixed Point Theory Appl. 22 (2020), 20. https://doi.org/10.1007/s11784-020-0755-2.
  12. E. Movahednia, M. De la Sen, A New Approach to Involution in Fuzzy $C^star$-Algebra via Functional Inequality and Python Implementation, Axioms 12 (2023), 435–449. https://doi.org/10.3390/axioms12050435.
  13. C. Park, M.T. Rassias, Additive Functional Equations and Partial Multipliers in $C^*$ -Algebras, Rev. Real Acad. Cienc. Exactas Fis. Nat. - A: Mat. 113 (2018), 2261–2275. https://doi.org/10.1007/s13398-018-0612-y.
  14. W. Roth, Operator-Valued Measures and Integrals for Cone-Valued Functions, in: Lecture Notes in Mathematics, Springer, Berlin, 2009. https://doi.org/10.1007/978-3-540-87565-9.
  15. K. Keimel, W. Roth, Ordered Cones and Approximation, Springer, Berlin, Heidelberg, 1992. https://doi.org/10.1007/bfb0089190.
  16. I. Nikoufar, A. Ranjbari, Stability of Linear Operators in Locally Convex Cones, Bull. Des Sci. Mathématiques 191 (2024), 103380. https://doi.org/10.1016/j.bulsci.2023.103380.
  17. C.D. Aliprantis, O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006. https://doi.org/http://dx.doi.org/10.1007/978-1-4020-5008-4.
  18. H.H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin, 1974. https://doi.org/10.1007/978-3-642-65970-6.
  19. P. Meyer-Nieberg, Banach Lattices, Springer, Berlin, 1991. https://doi.org/10.1007/978-3-642-76724-1.