Non-Bazilevič Functions Defined by Generalized M-Series Subordinating With Generalized Telephone Numbers

Main Article Content

Kadhavoor R. Karthikeyan, Kaliappan Vijaya, Kaliappan Uma, Alagiriswamy Senguttuvan

Abstract

Compared to the class of Bazilevič functions, the so-called non-Bazilevič functions have not been investigated as thoroughly. A convex combination of the class of non-Bazilevič functions and its Alexander transform characterisation would be used to describe and analyze a new class of functions. The differential operator that is used to define the function class involves generalized M-series. In addition to unifying the generalized Gaussian hypergeometric function and the Mittag-Leffler function, the generalized M-series also generalizes a number of other well-known topics in univalent function theory. We focus on estimates involving the initial coefficients of the functions with Maclaurin series that are part of the defined function class. Additionally, we acquire the inverse and logarithmic coefficients for the specified function class.

Article Details

References

  1. R. Alhabib, M.M. Ranna, H. Farah, A.A. Salama, Some Neutrosophic Probability Distributions, Neutrosophic Sets Syst. 22 (2018), 30–37.
  2. D. Alimohammadi, N.E. Cho, E.A. Adegani, A. Motamednezhad, Argument and Coefficient Estimates for Certain Analytic Functions, Mathematics 8 (2020), 88. https://doi.org/10.3390/math8010088.
  3. D. Alimohammadi, E. Analouei Adegani, T. Bulboacă, N.E. Cho, Logarithmic Coefficients for Classes Related to Convex Functions, Bull. Malays. Math. Sci. Soc. 44 (2021), 2659–2673. https://doi.org/10.1007/s40840-021-01085-z.
  4. M.K. Aouf, A.O. Mostafa, H.M. Zayed, Mapping Properties for Convolution Involving Hypergeometric Series, Ukr. Math. J. 70 (2019), 1688–1699. https://doi.org/10.1007/s11253-019-01611-0.
  5. D. Breaz, K.R. Karthikeyan, E. Umadevi, Non-Carathéodory Analytic Functions with Respect to Symmetric Points, Math. Comput. Model. Dyn. Syst. 30 (2024), 266–283. https://doi.org/10.1080/13873954.2024.2341691.
  6. D. Breaz, K.R. Karthikeyan, E. Umadevi, A. Senguttuvan, Some Properties of Bazilevič Functions Involving Srivastava-Tomovski Operator, Axioms 11 (2022), 687. https://doi.org/10.3390/axioms11120687.
  7. U. Bednarz, M. Wołowiec-Musiał, On a New Generalization of Telephone Numbers, Turk. J. Math. 43 (2019), 1595–1603. https://doi.org/10.3906/mat-1812-108.
  8. J.S. Beissinger, Similar Constructions for Young Tableaux and Involutions, and Their Application to Shiftable Tableaux, Discret. Math. 67 (1987), 149–163. https://doi.org/10.1016/0012-365x(87)90024-0.
  9. C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die Gegebene Werte Nicht Annehmen, Math. Ann. 64 (1907), 95–115. https://doi.org/10.1007/bf01449883.
  10. S. Chowla, I.N. Herstein, W.K. Moore, On Recursions Connected with Symmetric Groups I, Can. J. Math. 3 (1951), 328–334. https://doi.org/10.4153/cjm-1951-038-3.
  11. E. Deniz, Sharp Coefficients Bounds for Starlike Functions Associated with Generalized Telephone Numbers, Bull. Malays. Math. Sci. Soc. 44 (2020), 1525–1542. https://doi.org/10.1007/s40840-020-01016-4.
  12. H. Darwish, A.M. Lashin, B. Al Saeedi, On the Fekete-Szeg"{o} Problem for Starlike Functions of Complex Order, Kyungpook Math. J. 60 (2020), 477–484. https://doi.org/10.5666/KMJ.2020.60.3.477.
  13. S.M. El-Deeb, T. Bulboaca, J. Dziok, Pascal Distribution Series Connected with Certain Subclasses of Univalent Functions, Kyungpook Math. J. 59 (2019), 301–314. https://doi.org/10.5666/KMJ.2019.59.2.301.
  14. I. Efraimidis, A Generalization of Livingston's Coefficient Inequalities for Functions with Positive Real Part, J. Math. Anal. Appl. 435 (2016), 369–379. https://doi.org/10.1016/j.jmaa.2015.10.050.
  15. M.I. Elgmmal, H.E. Darwish, Certain New Classes of Analytic and Univalent Functions Associated with Su alu agean Operator with Varying Arguments, J. Fract. Calc. Appl. 14 (2023), 45–54.
  16. M. Fekete, G. Szegö, Eine Bemerkung Über Ungerade Schlichte Funktionen, J. Lond. Math. Soc. s1-8 (1933), 85–89. https://doi.org/10.1112/jlms/s1-8.2.85.
  17. K. Kadhavoor R, M. Dharmaraj, D. Breaz, Properties of Bazilevic Functions Involving $q$-Analogue of the Generalized $M$-Series, Eur. J. Pure Appl. Math. 18 (2025), 5841. https://doi.org/10.29020/nybg.ejpam.v18i1.5841.
  18. K.R. Karthikeyan, G. Murugusundaramoorthy, N.E. Cho, Some Inequalities on Bazilevič Class of Functions Involving Quasi-Subordination, AIMS Math. 6 (2021), 7111–7124. https://doi.org/10.3934/math.2021417.
  19. D.E. Knuth, The Art of Computer Programming, Addison-Wesley, Boston, (1973).
  20. A.E. Livingston, The Coefficients of Multivalent Close-To-Convex Functions, Proc. Am. Math. Soc. 21 (1969), 545–552. https://doi.org/10.2307/2036417.
  21. W.C. Ma, D. Minda, A Unified Treatment of Some Special Classes of Univalent Functions, in: Proceedings of the Conference on Complex Analysis, Tianjin, 1992. https://cir.nii.ac.jp/crid/1570572700543766144.
  22. I.M. Milin, Univalent Functions and Orthonormal Systems, Nauka, Moscow (1971). https://cir.nii.ac.jp/crid/1970304959955165641.
  23. S.S. Miller, P. Mocanu, M.O. Reade, All $alpha$-Convex Functions Are Univalent and Starlike, Proc. Am. Math. Soc. 37 (1973), 553–553. https://doi.org/10.1090/s0002-9939-1973-0313490-3.
  24. P.T. Mocanu, Une Propri'{e}t'{e} de Convexit'{e} G'{e}n'{e}ralis'ee dans la Th'{e}orie de la Repr'{e}sentation Conforme, Mathematica 11 (1969), 127–133.
  25. G. Murugusundaramoorthy, K. Vijaya, Certain Subclasses of Analytic Functions Associated with Generalized Telephone Numbers, Symmetry 14 (2022), 1053. https://doi.org/10.3390/sym14051053.
  26. G. Murugusundaramoorthy, Subclasses of Starlike and Convex Functions Involving Poisson Distribution Series, Afr. Mat. 28 (2017), 1357–1366. https://doi.org/10.1007/s13370-017-0520-x.
  27. G. Murugusundaramoorthy, kaliappan Vijaya, H. Ahmad, Gamma-Bazilevic Functions Related with Generalized Telephone Numbers, arXiv:2308.00238 (2023). https://doi.org/10.48550/ARXIV.2308.00238.
  28. M. Obradovi'c, A Class of Univalent Functions, Hokkaido Math. J. 27 (1998), 329–335.
  29. T. Panigrahi, G. Murugusundaramoorthy, Hankel Determinant for the Class of Bounded Turning Functions Associated With Generalized Telephone Numbers, Bol. Soc. Paran. Mat. 43 (2025), 1–9.
  30. C. Pommerenke, Univalent Functions, in: Studia Mathematica/Mathematische Lehrb"ucher, Band XXV, Vandenhoeck & Ruprecht, G"ottingen, 1975.
  31. S. Porwal, An Application of a Poisson Distribution Series on Certain Analytic Functions, J. Complex Anal. 2014 (2014), 984135. https://doi.org/10.1155/2014/984135.
  32. K.A. Reddy, K.R. Karthikeyan, G. Murugusundaramoorthy, Inequalities for the Taylor Coefficients of Spiralike Functions Involving $q$-Differential Operator, Eur. J. Pure Appl. Math. 12 (2019), 846–856. https://doi.org/10.29020/nybg.ejpam.v12i3.3429.
  33. J. Riordan, An Introduction to Combinatorial Analysis, Dover, Mineola, (2002).
  34. C. Selvaraj, K.R. Karthikeyan, Differential Sandwich Theorems for Certain Subclasses of Analytic Functions, Math. Commun. 13 (2008), 311–319.
  35. T.N. Shanmugam, M.P. Jeyaraman, S. Sivasubramanian, Fekete-Szeg"{o} Functional for Some Subclass of Non-Bazileviv{c} Functions, J. Inequal. Pure Appl. Math. 7 (2006), 117.
  36. T.N. Shanmugam, S. Sivasubramanian, M. Darus, S. Kavitha¶, On Sandwich Theorems for Certain Subclasses of Non-Bazilevič Functions Involving Cho-Kim Transformation‖, Complex Var. Elliptic Equ. 52 (2007), 1017–1028. https://doi.org/10.1080/17476930701552223.
  37. M. Sharma, R. Jain, A Note on a Generalized M-Series as a Special Function of Fractional Calculus, Fract. Calc. Appl. Anal. 12 (2009), 449–452.
  38. B. Shimelis, D. Suthar, Certain Properties of $q$-Analogue of $M$-Function, J. King Saud Univ. - Sci. 36 (2024), 103234. https://doi.org/10.1016/j.jksus.2024.103234.
  39. B. Shimelis, D. Suthar, Certain Bilinear Generating Relations for $q$-Analogue of $I$-Function, Res. Math. 11 (2024), 2380531. https://doi.org/10.1080/27684830.2024.2380531.
  40. B. Shimelis, D.L. Suthar, Applications of the Generalized Kober Type Fractional $q$-Integral Operator Contain the $q$-Analogue of $Bbb{M}$-Function to the $q$-Analogue of $H$-Function, Res. Math. 11 (2024), 2429768. https://doi.org/10.1080/27684830.2024.2429768.
  41. D.L. Suthar, F. Gidaf, M. Andualem, Certain Properties of Generalized M-Series Under Generalized Fractional Integral Operators, J. Math. 2021 (2021), 5527819. https://doi.org/10.1155/2021/5527819.
  42. Z. Tu, L. Xiong, Unified Solution of Fekete-Szegö Problem for Subclasses of Starlike Mappings in Several Complex Variables, Math. Slovaca 69 (2019), 843–856. https://doi.org/10.1515/ms-2017-0273.
  43. K. Vijaya, G. Murugusundaramoorthy, Bi-Starlike Function of Complex Order Involving Mathieu-Type Series Associated with Telephone Numbers, Symmetry 15 (2023), 638. https://doi.org/10.3390/sym15030638.
  44. A.K. Wanas, J.A. Khuttar, Applications of Borel Distribution Series on Analytic Functions, Earthline J. Math. Sci. 4 (2020), 71–82. https://doi.org/10.34198/ejms.4120.7182.
  45. A. Włoch, M. Wołowiec-Musiał, On Generalized Telephone Number, Their Interpretations and Matrix Generators, Util. Math. 10 (2017), 531–539.