Construction of New Continuous K-g-Frames within Hilbert C∗-Modules

Main Article Content

Sanae Touaiher, Mohamed Rossafi

Abstract

In this paper, we investigate the construction of new continuous c-K-g-frames in Hilbert C*-modules, extending and generalizing existing frame theory results. Our main theorem establishes sufficient positivity conditions on an auxiliary operator T to ensure that the transformed family \(\{\Lambda_\omega T\}_{\omega \in \Omega}\) forms a continuous c-K-g-frame. Through examples, we illustrate the necessity of these positivity conditions. We also present a method for combining multiple continuous c-K-g-frames into a single continuous c-\(\sum_i K_i T_i\)-g-frame. We prove associativity of continuous c-K-g-frames under product measure spaces, and explore exactness and stability under restriction to some measurable subsets for non-decreasing continuous K-g-frames with respect to an ordered measurable space. Additionally, we characterize dual frames in this setting, providing insight into their existence and construction. Our results extend and unify various notions of continuous frames in both Hilbert spaces and Hilbert C*-modules.

Article Details

References

  1. E. Alizadeh, A. Rahimi, E. Osgooei, M. Rahmani, Some Properties of Continuous (K)-g-Frames in Hilbert Spaces, U.P.B. Sci. Bull. Ser. A 81 (2019), 43–52.
  2. S. Ali, J. Antoine, J. Gazeau, Continuous Frames in Hilbert Space, Ann. Phys. 222 (1993), 1–37. https://doi.org/10.1006/aphy.1993.1016.
  3. R.J. Duffin, A.C. Schaeffer, A Class of Nonharmonic Fourier Series, Trans. Am. Math. Soc. 72 (1952), 341–366. https://doi.org/10.1090/s0002-9947-1952-0047179-6.
  4. R. El Jazzar, R. Mohamed, On Frames in Hilbert Modules Over Locally $C^{ast}$-Algebras, Int. J. Anal. Appl. 21 (2023), 130. https://doi.org/10.28924/2291-8639-21-2023-130.
  5. M. Frank, D.R. Larson, Frames in Hilbert $C^*$-Modules and $C^*$-Algebras, J. Oper. Theory 48 (2002), 273–314. https://www.jstor.org/stable/24715567.
  6. J. Gabardo, D. Han, Frames Associated with Measurable Spaces, Adv. Comput. Math. 18 (2003), 127–147. https://doi.org/10.1023/a:1021312429186.
  7. A. Karara, M. Rossafi, A. Touri, K-biframes in Hilbert Spaces, J. Anal. 33 (2024), 235–251. https://doi.org/10.1007/s41478-024-00831-3.
  8. A. Karara, M. Rossafi, M. Klilou, S. Kabbaj, Construction of Continuous (K)-g-Frames in Hilbert (C^*)-Modules, Palestine J. Math. 13 (2024), 198–209.
  9. A. Lfounoune, R. El Jazzar, K-frames in Super Hilbert $C^{ast}$-Modules, Int. J. Anal. Appl. 23 (2025), 19. https://doi.org/10.28924/2291-8639-23-2025-19.
  10. A. Lfounoune, H. Massit, A. Karara, M. Rossafi, Sum of g-Frames in Hilbert $C^{ast}$-Modules, Int. J. Anal. Appl. 23 (2025), 64. https://doi.org/10.28924/2291-8639-23-2025-64.
  11. H. Massit, M. Rossafi, C. Park, Some Relations Between Continuous Generalized Frames, Afr. Mat. 35 (2024), 12. https://doi.org/10.1007/s13370-023-01157-2.
  12. J. Mikusiski, The Bochner Integral, Academic Press, New York, 1978.
  13. E. Ouahidi, M. Rossafi, Woven Continuous Generalized Frames in Hilbert $C^{ast}$-Modules, Int. J. Anal. Appl. 23 (2025), 84. https://doi.org/10.28924/2291-8639-23-2025-84.
  14. M. Rossafi, A. Karara, R. El Jazzar, Biframes in Hilbert $C^*$-Modules, Montes Taurus J. Pure Appl. Math. 7 (2025), 69–80.
  15. M. Rossafi, M. Ghiati, M. Mouniane, F. Chouchene, A. Touri, S. Kabbaj, Continuous Frame in Hilbert $C^{*}$-Modules, J. Anal. 31 (2023), 2531–2561. https://doi.org/10.1007/s41478-023-00581-8.
  16. M. Rossafi, F. Nhari, C. Park, S. Kabbaj, Continuous $g$-Frames with $C^{*}$-Valued Bounds and Their Properties, Complex Anal. Oper. Theory 16 (2022), 44. https://doi.org/10.1007/s11785-022-01229-4.
  17. M. Rossafi, F. Nhari, Controlled K-g-fusion Frames in Hilbert $C^{ast}$-Modules, Int. J. Anal. Appl. 20 (2022), 1. https://doi.org/10.28924/2291-8639-20-2022-1.
  18. M. Rossafi, F.D. Nhari, K-g-Duals in Hilbert $C^{ast}$-Modules, Int. J. Anal. Appl. 20 (2022), 24. https://doi.org/10.28924/2291-8639-20-2022-24.
  19. M. Rossafi, S. Kabbaj, Generalized Frames for $B(H, K)$, Iran. J. Math. Sci. Inform. 17 (2022), 1–9. https://doi.org/10.52547/ijmsi.17.1.1.
  20. M. Rossafi, F. Nhari, A. Touri, Continuous Generalized Atomic Subspaces for Operators in Hilbert Spaces, J. Anal. 33 (2024), 927–947. https://doi.org/10.1007/s41478-024-00869-3.
  21. M. Rossafi, H. Massit, C. Park, Weaving Continuous Generalized Frames for Operators, Montes Taurus J. Pure Appl. Math. 6 (2024), 64–73.
  22. M. Rossafi, S. Kabbaj, Some Generalizations of Frames in Hilbert Modules, Int. J. Math. Math. Sci. 2021 (2021), 5522671. https://doi.org/10.1155/2021/5522671.
  23. M. Rossafi, S. Kabbaj, $ast$-K-Operator Frame for $operatorname{End}_{mathcal{A}}^{ast}(mathcal{H})$, Asian-Eur. J. Math. 13 (2020), 2050060. https://doi.org/10.1142/S1793557120500606.
  24. M. Rossafi, S. Kabbaj, Operator Frame for $operatorname{End}_{mathcal{A}}^{ast}(mathcal{H})$, J. Linear Topol. Algebra 8 (2019), 85–95.
  25. M. Rossafi, S. Kabbaj, $ast$-K-$g$-Frames in Hilbert $mathcal{A}$-modules, J. Linear Topol. Algebra 7 (2018), 63–71.
  26. M. Rossafi, S. Kabbaj, $ast$-$g$-Frames in Tensor Products of Hilbert $C^{ast}$-Modules, Ann. Univ. Paedagog. Crac. Stud. Math. 17 (2018), 17–25.
  27. M. Rossafi, K. Mabrouk, M. Ghiati, M. Mouniane, Weaving Operator Frames for $B(H)$, Methods Funct. Anal. Topol. 29 (2023), 111–124.
  28. S. Touaiher, R. El Jazzar, M. Rossafi, Properties and Characterizations of Controlled K-G-Fusion Frames Within Hilbert $C^*$-Modules, Int. J. Anal. Appl. 23 (2025), 111. https://doi.org/10.28924/2291-8639-23-2025-111.
  29. A. Touri, H. Labrigui, M. Rossafi, S. Kabbaj, Perturbation and Stability of Continuous Operator Frames in Hilbert $C^*$-Modules, J. Math. 2021 (2021), 5576534. https://doi.org/10.1155/2021/5576534.
  30. A. Touri, H. Labrigui, M. Rossafi, New Properties of Dual Continuous K-g-Frames in Hilbert Spaces, Int. J. Math. Math. Sci. 2021 (2021), 6671600. https://doi.org/10.1155/2021/6671600.
  31. Q. Xu, L. Sheng, Positive Semi-Definite Matrices of Adjointable Operators on Hilbert $C^*$-Modules, Linear Algebr. Appl. 428 (2008), 992–1000. https://doi.org/10.1016/j.laa.2007.08.035.
  32. L.C. Zhang, The Factor Decomposition Theorem of Bounded Generalized Inverse Modules and Their Topological Continuity, Acta Math. Sin. Engl. Ser. 23 (2007), 1413–1418. https://doi.org/10.1007/s10114-007-0867-2.