Intrinsic Study of a Special Anisotropic Conformal Transformation

Main Article Content

A. Soleiman, S. G. Elgendi

Abstract

In this paper, we present a coordinate-free investigation of a special anisotropic conformal transformation of a Finsler function \(L\). Specifically, for a Finsler metric \((M, L)\) and a one-form \(\mathfrak{B}\), we consider the transformation
\[\widetilde{L}(x, \dot x) = e^{\sigma(x,  \dot x)} L(x,  \dot x) = e^{\frac{\mathfrak{B}(x, \dot x)}{L(x,  \dot x)}} L(x,  \dot x).\]
We examine various geometric objects associated with the transformed metric \(\widetilde{L}(x,  \dot x)\) in terms of the corresponding objects of the original metric \(L\). In particular, we derive the expressions for the metric tensor, Cartan tensor, and other related geometric quantities for \(\widetilde{L}\), and we characterize the conditions under which the metric tensor of \(\widetilde{L}\) is non-degenerate. To further explore geometric structures such as the geodesic spray, Barthel connection, and Berwald connection of \(\widetilde{L}(x,  \dot x)\), we restrict the one-form \(\mathfrak{B}\) to one induced by a concurrent \(\pi\)-vector field. Under this assumption, we compute the curvature of the Barthel connection associated with \(\widetilde{L}\). An explicit example is also provided.

Article Details

References

  1. S.G. Elgendi, A. Soleiman, An Intrinsic Proof of Numata's Theorem on Landsberg Spaces, J. Korean Math. Soc. 61 (2024), 149–160. https://doi.org/10.4134/JKMS.J230263.
  2. S.G. Elgendi, A. Soleiman, Generalized First Approximation Matsumoto Metric, J. Korean Math. Soc. 62 (2025), 379–399. https://doi.org/10.4134/JKMS.J240091.
  3. A. Frölicher, A. Nijenhuis, Theory of Vector-Valued Differential Forms, Indag. Math. Proc. 61 (1958), 422–429. https://doi.org/10.1016/s1385-7258(58)50058-4.
  4. J. Grifone, Structure Presque Tangente et Connexions I, Ann. Inst. Fourier 22 (1972), 287–334. https://doi.org/10.5802/aif.407.
  5. J. Grifone, Structure Presque Tangente et Connexions II, Ann. Inst. Fourier 22 (1972), 291–338. https://doi.org/10.5802/aif.431.
  6. J. Klein, A. Voutier, Formes Extérieures Génératrices de Sprays, Ann. Inst. Fourier 18 (1968), 241–260. https://doi.org/10.5802/aif.282.
  7. M. Matsumoto, On Finsler Spaces with Randers' Metric and Special Forms of Important Tensors, Kyoto J. Math. 14 (1974), 477–498. https://doi.org/10.1215/kjm/1250523171.
  8. M. Matsumoto, The Berwald Connection of Finsler with an $(alpha,beta)$-Metric, Tensor, N. S. 50 (1991), 18–21.
  9. M. Matsumoto, Theory of Finsler Spaces with $(alpha,beta)$-Metric, Rep. Math. Phys. 31 (1992), 43–83. https://doi.org/10.1016/0034-4877(92)90005-l.
  10. Z. Shen, C. Yu, On Einstein Square Metrics, Publ. Math. Debr. 85 (2014), 413–424. https://doi.org/10.5486/pmd.2014.6015.
  11. A. Soleiman, S.G. Elgendi, Generalized Second Approximation Matsumoto Metric, J. Dyn. Syst. Geom. Theor. 22 (2024), 65–85. https://doi.org/10.47974/jdsgt-2024-005.
  12. S. Tachibana, On Finsler Spaces Which Admit Concurrent Vector Field, Tensor, N. S. 1 (1950), 1–5. https://cir.nii.ac.jp/crid/1573668924681218432.
  13. N.L. Youssef, S.H. Abed, A. Soleiman, Cartan and Berwald Connections in the Pullback Formalism, arXiv:0707.1320 (2007). http://arxiv.org/abs/0707.1320v2.
  14. N.L. Youssef, S.H. Abed, A. Soleiman, Concurrent $pi$-Vector Fields and Energy $beta$-Change, Int. J. Geom. Methods Mod. Phys. 06 (2009), 1003–1031. https://doi.org/10.1142/s0219887809003904.
  15. N.L. Youssef, S. Elgendi, New Finsler Package, Comput. Phys. Commun. 185 (2014), 986–997. https://doi.org/10.1016/j.cpc.2013.10.024.
  16. N.L. Youssef, S.G. Elgendi, A.A. Kotb, E.H. Taha, Anisotropic Conformal Change of Conic Pseudo-Finsler Surfaces, I, Class. Quantum Grav. 41 (2024), 175005. https://doi.org/10.1088/1361-6382/ad636f.