Weather Derivatives in a Renewal Setting with Uncertain Jumps: A Pricing Approach

Main Article Content

Zulfiqar Ali, Tareq Saeed, Javed Hussain

Abstract

We develop a novel framework for modeling temperature dynamics and pricing weather derivatives within the setting of Uncertainty Theory. The temperature process is described by a mean-reverting uncertain differential equation with jumps, where continuous uncertainty is modeled via a canonical Liu process and abrupt changes are captured using an uncertain renewal process. This structure yields uncertainty distributions for temperature indices such as Heating Degree Days (HDD) and Cooling Degree Days (CDD), enabling derivative pricing without relying on traditional probability measures or risk-neutral assumptions. By replacing stochastic processes with uncertain ones, the model accommodates belief-driven dynamics and subjective economic impacts, making it especially useful in environments with limited historical data or ambiguous risk. The approach offers a robust and flexible alternative for derivative valuation in both theoretical and applied contexts.

Article Details

References

  1. P. Alaton, B. Djehiche, D. Stillberger, On Modelling and Pricing Weather Derivatives, Appl. Math. Financ. 9 (2002), 1–20. https://doi.org/10.1080/13504860210132897.
  2. F.E. Benth, J.Š. Benth, The Volatility of Temperature and Pricing of Weather Derivatives, Quant. Financ. 7 (2007), 553–561. https://doi.org/10.1080/14697680601155334.
  3. F.E. Benth, J. Šaltytė‐Benth, Stochastic Modelling of Temperature Variations with a View Towards Weather Derivatives, Appl. Math. Financ. 12 (2005), 53–85. https://doi.org/10.1080/1350486042000271638.
  4. S.D. Campbell, F.X. Diebold, Weather Forecasting for Weather Derivatives, J. Amer. Stat. Assoc. 100 (2005), 6–16. https://www.jstor.org/stable/27590514.
  5. S. Jewson, R. Caballero, The Use of Weather Forecasts in the Pricing of Weather Derivatives, Meteorol. Appl. 10 (2003), 377–389. https://doi.org/10.1017/s1350482703001099.
  6. R. Elias, M. Wahab, L. Fang, A Comparison of Regime-Switching Temperature Modeling Approaches for Applications in Weather Derivatives, Eur. J. Oper. Res. 232 (2014), 549–560. https://doi.org/10.1016/j.ejor.2013.07.015.
  7. F. Schiller, G. Seidler, M. Wimmer, Temperature Models for Pricing Weather Derivatives, Quant. Financ. 12 (2012), 489–500. https://doi.org/10.1080/14697681003777097.
  8. T. Oetomo, M. Stevenson, Hot or Cold? A Comparison of Different Approaches to the Pricing of Weather Derivatives, J. Emerg. Mark. Financ. 4 (2005), 101–133. https://doi.org/10.1177/097265270500400201.
  9. A. Zapranis, A. Alexandridis, Weather Derivatives Pricing: Modeling the Seasonal Residual Variance of an Ornstein–Uhlenbeck Temperature Process with Neural Networks, Neurocomputing 73 (2009), 37–48. https://doi.org/10.1016/j.neucom.2009.01.018.
  10. B. Liu, Uncertainty Theory, Springer, Berlin, 2007. https://doi.org/10.1007/978-3-662-44354-5.
  11. B. Liu, Some Research Problems in Uncertainty Theory, J. Uncertain Syst. 3 (2009), 3–10.
  12. K. Yao, Uncertain Renewal Processes, Springer Singapore, 2019. https://doi.org/10.1007/978-981-13-9345-7.
  13. Y. Sun, T. Su, Mean-Reverting Stock Model with Floating Interest Rate in Uncertain Environment, Fuzzy Optim. Decis. Mak. 16 (2016), 235–255. https://doi.org/10.1007/s10700-016-9247-7.
  14. Z. Liu, Option Pricing Formulas in a New Uncertain Mean-Reverting Stock Model with Floating Interest Rate, Discret. Dyn. Nat. Soc. 2020 (2020), 3764589. https://doi.org/10.1155/2020/3764589.
  15. X. Chen, J. Gao, Uncertain Term Structure Model of Interest Rate, Soft Comput. 17 (2012), 597–604. https://doi.org/10.1007/s00500-012-0927-0.
  16. Z. Zhang, D.A. Ralescu, W. Liu, Valuation of Interest Rate Ceiling and Floor in Uncertain Financial Market, Fuzzy Optim. Decis. Mak. 15 (2015), 139–154. https://doi.org/10.1007/s10700-015-9223-7.
  17. Y. Sheng, G. Shi, Mean-Reverting Stock Model and Pricing Rules for Asian Currency Option, J. Intell. Fuzzy Syst. 34 (2018), 4261–4268. https://doi.org/10.3233/jifs-17536.
  18. S. Hassanzadeh, F. Mehrdoust, Valuation of European Option Under Uncertain Volatility Model, Soft Comput. 22 (2017), 4153–4163. https://doi.org/10.1007/s00500-017-2633-4.
  19. X. Yang, Z. Zhang, X. Gao, Asian-Barrier Option Pricing Formulas of Uncertain Financial Market, Chaos Solitons Fractals 123 (2019), 79–86. https://doi.org/10.1016/j.chaos.2019.03.037.
  20. R. Gao, Stability in Mean for Uncertain Differential Equation with Jumps, Appl. Math. Comput. 346 (2019), 15–22. https://doi.org/10.1016/j.amc.2018.09.068.
  21. X. Wang, Pricing of European Currency Options with Uncertain Exchange Rate and Stochastic Interest Rates, Discret. Dyn. Nat. Soc. 2019 (2019), 2548592. https://doi.org/10.1155/2019/2548592.
  22. Z. Li, Y. Liu, W. Zhang, Quasi-Closed-Form Solution and Numerical Method for Currency Option with Uncertain Volatility Model, Soft Comput. 24 (2020), 15041–15057. https://doi.org/10.1007/s00500-020-04854-3.
  23. K. Yao, Uncertain Calculus with Renewal Process, Fuzzy Optim. Decis. Mak. 11 (2012), 285–297. https://doi.org/10.1007/s10700-012-9132-y.
  24. X. Ji, H. Wu, A Currency Exchange Rate Model with Jumps in Uncertain Environment, Soft Comput. 21 (2016), 5507–5514. https://doi.org/10.1007/s00500-016-2141-y.
  25. S. Yu, Y. Ning, An Interest-Rate Model with Jumps for Uncertain Financial Markets, Physica A: Stat. Mech. Appl. 527 (2019), 121424. https://doi.org/10.1016/j.physa.2019.121424.
  26. R. Gao, Stability in Mean for Uncertain Differential Equation with Jumps, Appl. Math. Comput. 346 (2019), 15–22. https://doi.org/10.1016/j.amc.2018.09.068.
  27. X. Ji, H. Ke, Almost Sure Stability for Uncertain Differential Equation with Jumps, Soft Comput. 20 (2014), 547–553. https://doi.org/10.1007/s00500-014-1521-4.
  28. B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer, Berlin, 2011. https://doi.org/10.1007/978-3-642-13959-8.
  29. K. Yao, Uncertain Differential Equation, Springer, Berlin, 2016. https://doi.org/10.1007/978-3-662-52729-0_6.
  30. M. Cao, J. Wei, Weather Derivatives Valuation and Market Price of Weather Risk, J. Futur. Mark. 24 (2004), 1065–1089. https://doi.org/10.1002/fut.20122.
  31. B. Taştan, A. Hayfavi, Modeling Temperature and Pricing Weather Derivatives Based on Temperature, Adv. Meteorol. 2017 (2017), 3913817. https://doi.org/10.1155/2017/3913817.