Strong D-Stability Analysis of Economic Models

Main Article Content

Mutti-Ur Rehman, Tulkin Farmanov, Asliddin Abdulloyev, Nigina Odinayeva, Hilola Abdullayeva, S.S. Dexhanov

Abstract

The analysis of stability ensures that a dynamical system’s output remains bounded for given bounded inputs and manages the system behavior. The concept of strong D-stability extends the idea of stability requiring the system’s poles to stay within a predefined D-region in the complex plane C subject to uncertain parameter variations. This ensures robustness and performance of the dynamical system. We offer some new findings on stability analysis, strong D-stability analysis, and their interconnections with structured singular values. The theoretical findings were gained by using several tools from linear algebra and system theory. The numerical experimentation shows the behavior of the spectrum and hence the stability of dynamical systems. For the computation and analysis of pseudo-spectrum, the Eigtool has been utilized.

Article Details

References

  1. J. Chen, M.K. Fan, C. Yu, On D-Stability and Structured Singular Values, Syst. Control. Lett. 24 (1995), 19–24. https://doi.org/10.1016/0167-6911(94)00036-u.
  2. A.C. Enthoven, K.J. Arrow, A Theorem on Expectations and the Stability of Equilibrium, Econometrica 24 (1956), 288–293. https://doi.org/10.2307/1911633.
  3. E.H. Abed, Strong $D$-Stability, Syst. Control. Lett. 7 (1986), 207–212. https://doi.org/10.1016/0167-6911(86)90116-7.
  4. E.H. ABED, A.L. TITS, On the Stability of Multiple Time-Scale Systems, Int. J. Control. 44 (1986), 211–218. https://doi.org/10.1080/00207178608933591.
  5. H.K. Khalil, P.V. Kokotovic, $D$-Stability and Multi-Parameter Singular Perturbation, SIAM J. Control. Optim. 17 (1979), 56–65. https://doi.org/10.1137/0317006.
  6. D.D. Siljak, Stability of Large-Scale Systems Under Structural Perturbations, in: IEEE Transactions on Systems, Man, and Cybernetics, Institute of Electrical and Electronics Engineers (IEEE), 1972, pp. 657-663. https://doi.org/10.1109/TSMC.1972.4309194.
  7. C.R. Johnson, Sufficient Conditions for $D$-Stability, J. Econ. Theory 9 (1974), 53–62. https://doi.org/10.1016/0022-0531(74)90074-x.
  8. C. Yu, M.K. Fan, Decentralized Integral Controllability and D-Stability, Chem. Eng. Sci. 45 (1990), 3299–3309. https://doi.org/10.1016/0009-2509(90)80221-y.
  9. J. Doyle, Analysis of Feedback Systems with Structured Uncertainties, IEE Proc. D Control. Theory Appl. 129 (1982), 242–250. https://doi.org/10.1049/ip-d.1982.0053.
  10. R. Braatz, P. Young, J. Doyle, M. Morari, Computational Complexity of $mu$ Calculation, IEEE Trans. Autom. Control. 39 (1994), 1000–1002. https://doi.org/10.1109/9.284879.
  11. R.L. Dailey, A New Algorithm for the Real Structured Singular Value, in: 1990 American Control Conference, IEEE, 1990, pp. 3036-3040. https://doi.org/10.23919/ACC.1990.4791276.
  12. A. Yazıcı, A. Karamancıoğlu, R. Kasimbeyli, A Nonlinear Programming Technique to Compute a Tight Lower Bound for the Real Structured Singular Value, Optim. Eng. 12 (2010), 445–458. https://doi.org/10.1007/s11081-010-9120-4.
  13. D. Piga, A. Benavoli, A Unified Framework for Deterministic and Probabilistic $D$-Stability Analysis of Uncertain Polynomial Matrices, IEEE Trans. Autom. Control. 62 (2017), 5437–5444. https://doi.org/10.1109/tac.2017.2699281.
  14. N. Guglielmi, M. Rehman, D. Kressner, A Novel Iterative Method to Approximate Structured Singular Values, SIAM J. Matrix Anal. Appl. 38 (2017), 361–386. https://doi.org/10.1137/16m1074977.
  15. J. Chen, M.K. Fan, C. Yu, On $D$-Stability and Structured Singular Values, Syst. Control. Lett. 24 (1995), 19–24. https://doi.org/10.1016/0167-6911(94)00036-u.
  16. M. Rehman, J. Alzabut, M. Tayyab, F. Amir, Interconnection Between Schur Stability and Structured Singular Values, Contemp. Math. 6 (2024), 63–72. https://doi.org/10.37256/cm.6120255707.
  17. R.W. Brockett, Finite Dimensional Linear Systems, Wiley, 1970.
  18. T. Kato, Perturbation Theory for Linear Operators, Springer, 1966. https://doi.org/10.1007/978-3-642-66282-9.
  19. J. Lee, T.F. Edgar, Real Structured Singular Value Conditions for the Strong D-Stability, Syst. Control. Lett. 44 (2001), 273–277. https://doi.org/10.1016/s0167-6911(01)00147-5.
  20. M. Rehman, T.H. Rasulov, F. Amir, $D$-Stability, Strong $D$-Stability and $mu$-Values, Lobachevskii J. Math. 45 (2024), 1227–1233. https://doi.org/10.1134/s1995080224600754.
  21. E. Martínez-García, A Matter of Perspective: Mapping Linear Rational Expectations Models into Finite-Order VAR Form, Globalization Institute Working Paper 389, Federal Reserve Bank of Dallas, (2020). https://doi.org/10.24149/gwp389.
  22. K.J. Arrow, M. McManus, A Note on Dynamic Stability, Econometrica 26 (1958), 448–454. https://doi.org/10.2307/1907624.