Strong Convergence of Cesàro Mean Sequences and Split Equilibrium Solutions via Hybrid Mappings in Hilbert Spaces

Main Article Content

Lawal Y. Haruna, Mohammed S. Lawan, Godwin C. Ugwunnadi, Maggie Aphane

Abstract

This paper introduces a novel accelerated shrinking projection algorithm for approximating Cesàro mean sequences and solving split equilibrium problems in real Hilbert spaces. The iterative scheme is constructed using finite families of commutative, normally m-generalized hybrid mappings, with a step size chosen independently of the spectral radius to facilitate computation. We prove that the generated sequence converges strongly to a common element in the intersection of the fixed point sets of the mappings, which also solves the associated split equilibrium problem. The proposed method yields new and extended strong convergence theorems for various classes of hybrid mappings, including normally generalized hybrid, m-generalized hybrid, and normally 2-generalized hybrid mappings. A numerical example is provided to demonstrate the superior convergence rate of our algorithm compared to existing methods. These results generalize and unify several known findings in this direction.

Article Details

References

  1. B. Ali, L. Yusuf Haruna, Fixed Point Approximations of Noncommutative Generic 2-Generalized Bregman Nonspreading Mappings with Equilibriums, J. Nonlinear Sci. Appl. 13 (2020), 303–316. https://doi.org/10.22436/jnsa.013.06.01.
  2. A. Bashir, H. Lawal Yusuf, I. Yusuf, Hybrid Inertial Algorithm for Fixed Point and Equilibrium Problems in Reflexive Banach Spaces, Fixed Point Theory 23 (2022), 429–446. https://doi.org/10.24193/fpt-ro.2022.2.01.
  3. B. Ali, L.Y. Haruna, Attractive Point and Nonlinear Ergodic Theorems Without Convexity in Reflexive Banach Spaces, Rend. Circ. Mat. Palermo Ser. II 70 (2020), 1527–1540. https://doi.org/10.1007/s12215-020-00574-7.
  4. B. Ali, L.Y. Haruna, Iterative Approximations of Attractive Point of A New Generalized Bregman Nonspreading Mapping in Banach Spaces, Bull. Iran. Math. Soc. 46 (2019), 331–354. https://doi.org/10.1007/s41980-019-00260-0.
  5. S. Alizadeh, F. Moradlou, Weak Convergence Theorems for 2-Generalized Hybrid Mappings and Equilibrium Problems, Commun. Korean Math. Soc. 31 (2016), 765–777. https://doi.org/10.4134/ckms.c150232.
  6. J.B. Baillon, Un Theoreme de Type Ergodique Pour Less Contractions Nonlinears dans Un Espaces de Hilbert, C. R. Acad. Sci. Paris, Ser. A-B 280 (1975), 1511–1541.
  7. E. Blum, W. Oettli, From Optimization and Variational Inequalities to Equilibrium Problems, Math. Stud. 6 (1994), 123–145. https://cir.nii.ac.jp/crid/1572261551155331712.
  8. C. Byrne, Iterative Oblique Projection Onto Convex Sets and the Split Feasibility Problem, Inverse Probl. 18 (2002), 441–453. https://doi.org/10.1088/0266-5611/18/2/310.
  9. Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A Unified Approach for Inversion Problems in Intensity-Modulated Radiation Therapy, Phys. Med. Biol. 51 (2006), 2353–2365. https://doi.org/10.1088/0031-9155/51/10/001.
  10. Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The Multiple-Sets Split Feasibility Problem and Its Applications for Inverse Problems, Inverse Probl. 21 (2005), 2071–2084. https://doi.org/10.1088/0266-5611/21/6/017.
  11. Y. Censor, A. Gibali, S. Reich, Algorithms for the Split Variational Inequality Problem, Numer. Algorithms 59 (2011), 301–323. https://doi.org/10.1007/s11075-011-9490-5.
  12. P. Combettes, The Convex Feasibility Problem in Image Recovery, Adv. Imaging Electron Phys. 95 (1996), 155–270. https://doi.org/10.1016/s1076-5670(08)70157-5.
  13. P.L. Combettes, S.A. Hirstoaga, Equilibrium Programming in Hilbert Spaces, J. Nonlinear Convex Anal. 6 (2005), 117–136.
  14. .Y. Haruna, B. Ali, Y. Shehu, J. Yao, Attractive Point and Ergodic Theorems for Finite Generic N-Generalized Bregman Nonspreading Mappings in Banach Spaces, J. Nonlinear Convex Anal. 24 (2023), 701–727.
  15. L.Y. Haruna, B. Ali, Y. Shehu, J. Yao, A Mean Convergence Theorem Without Convexity for Finite Commutative Nonlinear Mappings in Reflexive Banach Spaces, Mathematics 10 (2022), 1678. https://doi.org/10.3390/math10101678.
  16. M. Hojo, A. Kondo, W. Takahashi, Weak and Strong Convergence Theorems for Commutative Normally 2-Generalized Hybrid Mappings in Hilbert Spaces, Linear Nonlinear Anal. 4 (2018), 117–134.
  17. M. Hojo, S. Takahashi, W. Takahashi, Attractive Point and Ergodic Theorems for Two Nonlinear Mappings in Hilbert Spaces, Linear. Nonlinear Anal. 3 (2017), 275–286.
  18. M. Hojo, W. Takahashi, I. Termwuttipong, Strong Convergence Theorems for 2-Generalized Hybrid Mappings in Hilbert Spaces, Nonlinear Anal.: Theory Methods Appl. 75 (2012), 2166–2176. https://doi.org/10.1016/j.na.2011.10.017.
  19. P. Kocourek, W. Takashi, J. Yao, Fixed Point Theorems and Weak Convergence Theorems for Generalized Hybrid Mappings in Hilbert Spaces, Taiwan. J. Math. 14 (2010), 2497–2511. https://doi.org/10.11650/twjm/1500406086.
  20. A. Kondo, Mean Convergence Theorems Using Hybrid Methods to Find Common Fixed Points for Noncommutative Nonlinear Mappings in Hilbert Spaces, J. Appl. Math. Comput. 68 (2021), 217–248. https://doi.org/10.1007/s12190-021-01527-8.
  21. A. Kondo, W. Takahashi, Attractive Points and Weak Convergence Theorems for Normally N-Generalized Hybrid Mappings in Hilbert Spaces, Linear Nonlinear Anal. 3 (2017), 297–310.
  22. A. Kondo, W. Takahashi, Weak Convergence Theorems to Common Attractive Points for Normally 2-Generalized Hybrid Mappings With Errors, J. Nonlinear Convex Anal. 21 (2020), 2549–2570.
  23. L. Lin, W. Takahashi, Attractive Point Theorems and Ergodic Theorems for Nonlinear Mappings in Hilbert Spaces, Taiwan. J. Math. 16 (2012), 1763–1779. https://doi.org/10.11650/twjm/1500406795.
  24. T. Maruyama, W. Takahashi, M. Yao, Fixed Point and Ergodic Theorems for New Nonlinear Mappings in Hilbert Spasces, J. Nonlinear Convex Anal. 12 (2011), 185–197.
  25. W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, (2009).
  26. W. Takahashi, Weak and Strong Convergence Theorems for Noncommutative 2-Generalized Hybrid Mappings in Hilbert Spaces, J. Nonlinear Convex Anal. 19 (2018), 867–880.
  27. W. Takahashi, C.F. Wen, J.C. Yao, Strong Convergence Theorems by Hybrid Methods for Noncommutative Normally 2-Generalized Hybrid Mappings in Hilbert spaces, Appl. Anal. Optim. 3 (2019), 43–56.
  28. W. Takahashi, N.C. Wong, J.C. Yao, Attractive Point and Weak Convergence Theorem for New Generalized Hybrid Mappings in Hilbert Spaces, J. Nonlinear and Convex Anal. 13 (2012), 745–757.
  29. J. Zhao, Y. Liang, Z. Liu, Strong Convergent Iterative Techniques for 2-Generalized Hybrid Mappings and Split Equilibrium Problems, Filomat 33 (2019), 5851–5862. https://doi.org/10.2298/fil1918851z.