A Study of Bi-Univalent Class in Leaf-Like Domains Using Quantum Calculus Through Subordination
Main Article Content
Abstract
In this work, we introduce and study a new subclass of bi-univalent analytic functions that are associated with a leaf-shaped region, formulated through the framework of q-calculus and the principle of subordination. employing appropriate analytical techniques, we derive sharp coefficient estimates with a particular focus on the initial bounds for |a2| and |a3|, which play a central role in geometric function theory. In addition, we establish Fekete–Szegö-type inequalities for functions belonging to the proposed class, thereby extending and complementing several existing results in the literature. To illustrate the theoretical findings, we provide explicit examples and graphical representations that highlight the behavior of functions in the class under consideration. The analysis not only broadens the applicability of q-calculus methods in the study of bi-univalent functions but also contributes to a deeper understanding of function classes connected with geometrically significant domains. Potential avenues for further research and connections to related subclasses are also discussed.
Article Details
References
- O. Ahuja, N. Bohra, A. Cetinkaya, S. Kumar, Univalent Functions Associated With the Symmetric Points and Cardioid-Shaped Domain Involving $(p,q)$-Calculus, Kyungpook Math. J. 61 (2021), 75–98.
- R.P. Agarwal, Certain Fractional $q$-Integrals and $q$-Derivatives, Math. Proc. Camb. Philos. Soc. 66 (1969), 365–370. https://doi.org/10.1017/S0305004100045060.
- A. Alsoboh, A. Amourah, K. Al Mashrafi, T. Sasa, Bi-Starlike and Bi-Convex Function Classes Connected to Shell-Like Curves and the $q$-Analogue of Fibonacci Numbers, Int. J. Anal. Appl. 23 (2025), 201. https://doi.org/10.28924/2291-8639-23-2025-201.
- M. Ahmed, A. Alsoboh, A. Amourah, J. Salah, On the Fractional $q$-Differintegral Operator for Subclasses of Bi-Univalent Functions Subordinate to $q$-Ultraspherical Polynomials, Eur. J. Pure Appl. Math. 18 (2025), 6586. https://doi.org/10.29020/nybg.ejpam.v18i3.6586.
- A. Alsoboh, M. Darus, New Subclass of Analytic Functions Defined by $q$-Differential Operator With Respect to $k$-Symmetric Points, Int. J. Math. Comput. Sci. 14 (2019), 761–773.
- A. Alsoboh, A. Amourah, O. Alnajar, M. Ahmed, T.M. Seoudy, Exploring $q$-Fibonacci Numbers in Geometric Function Theory: Univalence and Shell-Like Starlike Curves, Mathematics 13 (2025), 1294. https://doi.org/10.3390/math13081294.
- A. Alsoboh, A. Amourah, M. Darus, C.A. Rudder, Investigating New Subclasses of Bi-Univalent Functions Associated with $q$-Pascal Distribution Series Using the Subordination Principle, Symmetry 15 (2023), 1109. https://doi.org/10.3390/sym15051109.
- A. Alsoboh, A. Amourah, F.M. Sakar, O. Ogilat, G.M. Gharib, et al., Coefficient Estimation Utilizing the Faber Polynomial for a Subfamily of Bi-Univalent Functions, Axioms 12 (2023), 512. https://doi.org/10.3390/axioms12060512.
- A. Alsoboh, G.I. Oros, A Class of Bi-Univalent Functions in a Leaf-Like Domain Defined Through Subordination via $q$-Calculus, Mathematics 12 (2024), 1594. https://doi.org/10.3390/math12101594.
- A. Amourah, A. Alsoboh, D. Breaz, S.M. El-Deeb, A Bi-Starlike Class in a Leaf-Like Domain Defined Through Subordination via $q$-Calculus, Mathematics 12 (2024), 1735. https://doi.org/10.3390/math12111735.
- A. Amourah, A. Alsoboh, J. Salah, K. Al Kalbani, Bounds on Initial Coefficients for Bi-Univalent Functions Linked to $q$-Analog of le Roy-Type Mittag-Leffler Function, WSEAS Trans. Math. 23 (2024), 714–722. https://doi.org/10.37394/23206.2024.23.73.
- T. Al-Hawary, A. Amourah, A. Alsoboh, O. Ogilat, I. Harny, and M. Darus, Applications of $q$-Ultraspherical polynomials to bi-univalent functions defined by $q$-Saigo’s fractional integral operators, AIMS Math., 9, 2024, 17063–17075.
- T. Al-Hawary, A. Amourah, A. Alsoboh, A. M. Freihat, O. Ogilat, I. Harny, M. Darus, Subclasses of Yamakawa-Type Bi-Starlike Functions Subordinate to Gegenbauer Polynomials Associated With Quantum Calculus, Results Nonlinear Anal. 7 (2024), 75–83.
- O. Al-Refai, A. Amourah, T. Al-Hawary, B.A. Frasin, A New Method for Estimating General Coefficients to Classes of Bi-Univalent Functions, J. Funct. Spaces 2024 (2024), 9889253. https://doi.org/10.1155/2024/9889253.
- A. Amourah, O. Alnajar, M. Darus, A. Shdouh, O. Ogilat, Estimates for the Coefficients of Subclasses Defined by the Bell Distribution of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials, Mathematics 11 (2023), 1799. https://doi.org/10.3390/math11081799.
- F. Yousef, A.A. Amourah, M. Darus, Differential Sandwich Theorems for $p$-Valent Functions Associated With a Certain Generalized Differential Operator and Integral Operator, Ital. J. Pure Appl. Math. 36 (2016), 543–556.
- A.A. Amourah, F. Yousef, Some Properties of a Class of Analytic Functions Involving a New Generalized Differential Operator, Bol. Soc. Parana. Mat. 38 (2019), 33–42. https://doi.org/10.5269/bspm.v38i6.40530.
- L. Andrei, V. Caus, Subordinations Results on a $q$-Derivative Differential Operator, Mathematics 12 (2024), 208. https://doi.org/10.3390/math12020208.
- P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Vol. 259, Springer, 1983.
- S.H. Hadi, T.G. Shaba, Z.S. Madhi, M. Darus, A.A. Lupaş, et al., Boundary Values of Hankel and Toeplitz Determinants for $q$-Convex Functions, MethodsX 13 (2024), 102842. https://doi.org/10.1016/j.mex.2024.102842.
- S.H. Hadi, M. Darus, B. Alamri, Ş. Altınkaya, A. Alatawi, On Classes of $z$-Uniformly $q$-Analogue of Analytic Functions with Some Subordination Results, Appl. Math. Sci. Eng. 32 (2024), 2312803. https://doi.org/10.1080/27690911.2024.2312803.
- A. Alatawi, M. Darus, The Fekete–Szegö Inequality for a Subfamily of $q$-Analogue Analytic Functions Associated with the Modified $q$-Opoola Operator, Asian-Eur. J. Math. 17 (2024), 2450027. https://doi.org/10.1142/s179355712450027x.
- M. Fekete, G. Szegö, Eine Bemerkung Über Ungerade Schlichte Funktionen, J. Lond. Math. Soc. s1-8 (1933), 85–89. https://doi.org/10.1112/jlms/s1-8.2.85.
- G. Gasper, M. Rahman, Basic Hypergeometric Series, 2nd ed., Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511526251.
- M.F. Khan, M. AbaOud, New Applications of Fractional $q$-Calculus Operator for a New Subclass of $q$-Starlike Functions Related with the Cardioid Domain, Fractal Fract. 8 (2024), 71. https://doi.org/10.3390/fractalfract8010071.
- W. Ma, A Unified Treatment of Some Special Classes of Univalent Functions, in: Proceedings of the Conference on Complex Analysis, Tianjin, China, pp. 157–169, 1992.
- S.S. Miller, Differential Inequalities and Carathéodory Functions, Bull. Am. Math. Soc. 81 (1975), 79–81.
- B. Khan, H.M. Srivastava, N. Khan, M. Darus, M. Tahir, et al., Coefficient Estimates for a Subclass of Analytic Functions Associated with a Certain Leaf-Like Domain, Mathematics 8 (2020), 1334. https://doi.org/10.3390/math8081334.
- K. Piejko, J. Sokół, On the Convolution and Subordination of Convex Functions, Appl. Math. Lett. 25 (2012), 448–453. https://doi.org/10.1016/j.aml.2011.09.034.
- M. Hari Priya, R. Sharma, On a Class of Bounded Turning Functions Subordinate to a Leaf-Like Domain, J. Phys.: Conf. Ser. 1000 (2018), 012056. https://doi.org/10.1088/1742-6596/1000/1/012056.
- T.M. Seoudy, M.K. Aouf, Coefficient Estimates of New Classes of $q$-Starlike and $q$-Convex Functions of Complex Order, J. Math. Inequal. 10 (2016), 135–145. https://doi.org/10.7153/jmi-10-11.
- G. Singh, C. Kaur, Starlike and Convex Functions Subordinate to Leaf-Like Domain, Turk. J. Comput. Math. Educ. 12 (2021), 6098–6102.
- J. Sokół, J. Stankiewicz, Radius of Convexity of Some Subclasses of Strongly Starlike Functions, Zesz. Nauk. Politech. Rzeszowskiej Mat. 19 (1996), 101–105.
- Q.A. Shakir, A.S. Tayyah, D. Breaz, L. Cotîrlă, E. Rapeanu, et al., Upper Bounds of the Third Hankel Determinant for Bi-Univalent Functions in Crescent-Shaped Domains, Symmetry 16 (2024), 1281. https://doi.org/10.3390/sym16101281.
- A.S. Tayyah, W.G. Atshan, Starlikeness and Bi-Starlikeness Associated with a New Carathéodory Function, J. Math. Sci. 290 (2025), 232–256. https://doi.org/10.1007/s10958-025-07604-8.
- A.S. Tayyah, W.G. Atshan, G.I. Oros, Third-Order Differential Subordination Results for Meromorphic Functions Associated with the Inverse of the Legendre Chi Function via the Mittag-Leffler Identity, Mathematics 13 (2025), 2089. https://doi.org/10.3390/math13132089.
- S.A. AL-Ameedee, W.G. Atshan, F.A. AL-Maamori, Second Hankel Determinant for Certain Subclasses of Bi-Univalent Functions, J. Phys.: Conf. Ser. 1664 (2020), 012044. https://doi.org/10.1088/1742-6596/1664/1/012044.
- S.A. Al-Ameedee, W. Galib Atshan, F. Ali Al-Maamori, Coefficients Estimates of Bi-Univalent Functions Defined by New Subclass Function, J. Phys.: Conf. Ser. 1530 (2020), 012105. https://doi.org/10.1088/1742-6596/1530/1/012105.
- W. Galib Atshan, E. Ibraham Badawi, Results on Coefficient Estimates for Subclasses of Analytic and Bi-Univalent Functions, J. Phys.: Conf. Ser. 1294 (2019), 032025. https://doi.org/10.1088/1742-6596/1294/3/032025.
- M.H. Darassi, O. Yasin, M. Ahmed, A Semi-Analytical Method to Solve the Fitzhugh-Nagumo Equation, J. Interdiscip. Math. 28 (2025), 1489–1504. https://doi.org/10.47974/jim-2064.
- M. Ahmed, Universal Covariant Representations and Positive Elements, Azerbaijan J. Math. 15 (2025), 44–52. https://doi.org/10.59849/2218-6816.2025.1.44.
- M. Ahmed, F. Moh’d, The Graded Annihilating Submodule Graph, AKCE Int. J. Graphs Comb. (2025). https://doi.org/10.1080/09728600.2025.2492075.
- M. Ahmed, Amenable Quase-Lattice Ordered Groups and True Representations, Bol. Soc. Parana. Mat. 41 (2022), 1–10. https://doi.org/10.5269/bspm.62552.
- F. Moh'd, M. Ahmed, M. Refai, Flexible Modules and Graded Rings, Bol. Soc. Parana. Mat. 41 (2022), 1–14. https://doi.org/10.5269/bspm.62550.
- Y.A. Al-Qudah, F.A. Al-Sharqi, M. Mishlish, M.M. Rasheed, Hybrid Integrated Decision-Making Algorithm Based on AO of Possibility Interval-Valued Neutrosophic Soft Settings, Int. J. Neutrosophic Sci. 22 (2023), 84–98. https://doi.org/10.54216/ijns.220306.
- A. Yousef, K. Alhazaymeh, N. Hassan, H. Qoqazeh, M. Almousa, et al., Transitive Closure of Vague Soft Set Relations and Its Operators, Int. J. Fuzzy Log. Intell. Syst. 22 (2022), 59–68. https://doi.org/10.5391/ijfis.2022.22.1.59.
- H. Qoqazeh, Y. Al-Qudah, M. Almousa, A. Jaradat, on D-Compact Topological Spaces, J. Appl. Math. Inform. 39 (2021), 883–894. https://doi.org/10.14317/JAMI.2021.883.