Birkhoff Centre of Paradistributive Latticiods
Main Article Content
Abstract
We study the Birkhoff centre B(V) of a Paradistributive Latticoid (PDL) V. Assuming the existence of a greatest element and at least one minimal element, we prove that B(V) forms a relatively complemented sub-PDL and derive a decomposition theorem characterizing its elements via direct products. We establish functoriality of B(−) with respect to products and lattice-quotients enforcing commutativity, and we show a bijection between B(V) and complemented principal ideals of V. For associative PDLs, we obtain a correspondence between B(V) and factor-congruences, hence direct decompositions. The results extend earlier work on almost distributive lattices to the broader framework of PDLs and connect with the theory of normal PDLs.
Article Details
References
- S. Ajjarapu, R. Bandaru, R. Shukla, Y.B. Jun, Parapseudo-Complementation on Paradistributive Latticoids, Eur. J. Pure Appl. Math. 17 (2024), 1129–1145. https://doi.org/10.29020/nybg.ejpam.v17i2.5042.
- R. Bandaru, S. Ajjarapu, Paradistributive Latticoids, Eur. J. Pure Appl. Math. 17 (2024), 819–834. https://doi.org/10.29020/nybg.ejpam.v17i2.5125.
- R. Bandaru, P. Patel, N. Rafi, R. Shukla, S. Ajjarapu, Normal Paradistributive Latticoids, Eur. J. Pure Appl. Math. 17 (2024), 1306–1320. https://doi.org/10.29020/nybg.ejpam.v17i2.5127.
- G. Birkhoff, Lattice Theory, American Mathematical Society, 1967.
- S. Burris, H.P. Sankappanavar, A Course in Universal Algebra, Springer, New York, 1981. https://doi.org/10.1007/978-1-4613-8130-3.
- W.H. Cornish, Normal Lattices, J. Aust. Math. Soc. 14 (1972), 200–215. https://doi.org/10.1017/s1446788700010041.
- Y.L. Ershov, Relatively Complemented, Distributive Lattices, Algebr. Log. 18 (1979), 431–459. https://doi.org/10.1007/bf01673954.
- J. Harding, A.B. Romanowska, Varieties of Birkhoff Systems Part I, Order 34 (2016), 45–68. https://doi.org/10.1007/s11083-016-9388-x.
- J. Harding, A.B. Romanowska, Varieties of Birkhoff Systems Part II, Order 34 (2016), 69–89. https://doi.org/10.1007/s11083-016-9392-1.
- Y.S. Pawar, Characterizations of Normal Lattices, Indian J. Pure Appl. Math. 24 (1993), 651–656.
- U.M. Swamy, S. Ramesh, Birkhoff Centre of an Almost Distributive Lattice, Int. J. Algebra 3 (2009), 539–546.
- U.M. Swamy, G.C. Rao, Almost Distributive Lattices, J. Aust. Math. Soc. Ser. A 31 (1981), 77–91. https://doi.org/10.1017/s1446788700018498.