Birkhoff Centre of Paradistributive Latticiods

Main Article Content

Ramesh Sirisetti, Satyanarayana Rao Kola, Ravikumar Bandaru, Thiti Gaketem

Abstract

We study the Birkhoff centre B(V) of a Paradistributive Latticoid (PDL) V. Assuming the existence of a greatest element and at least one minimal element, we prove that B(V) forms a relatively complemented sub-PDL and derive a decomposition theorem characterizing its elements via direct products. We establish functoriality of B(−) with respect to products and lattice-quotients enforcing commutativity, and we show a bijection between B(V) and complemented principal ideals of V. For associative PDLs, we obtain a correspondence between B(V) and factor-congruences, hence direct decompositions. The results extend earlier work on almost distributive lattices to the broader framework of PDLs and connect with the theory of normal PDLs.

Article Details

References

  1. S. Ajjarapu, R. Bandaru, R. Shukla, Y.B. Jun, Parapseudo-Complementation on Paradistributive Latticoids, Eur. J. Pure Appl. Math. 17 (2024), 1129–1145. https://doi.org/10.29020/nybg.ejpam.v17i2.5042.
  2. R. Bandaru, S. Ajjarapu, Paradistributive Latticoids, Eur. J. Pure Appl. Math. 17 (2024), 819–834. https://doi.org/10.29020/nybg.ejpam.v17i2.5125.
  3. R. Bandaru, P. Patel, N. Rafi, R. Shukla, S. Ajjarapu, Normal Paradistributive Latticoids, Eur. J. Pure Appl. Math. 17 (2024), 1306–1320. https://doi.org/10.29020/nybg.ejpam.v17i2.5127.
  4. G. Birkhoff, Lattice Theory, American Mathematical Society, 1967.
  5. S. Burris, H.P. Sankappanavar, A Course in Universal Algebra, Springer, New York, 1981. https://doi.org/10.1007/978-1-4613-8130-3.
  6. W.H. Cornish, Normal Lattices, J. Aust. Math. Soc. 14 (1972), 200–215. https://doi.org/10.1017/s1446788700010041.
  7. Y.L. Ershov, Relatively Complemented, Distributive Lattices, Algebr. Log. 18 (1979), 431–459. https://doi.org/10.1007/bf01673954.
  8. J. Harding, A.B. Romanowska, Varieties of Birkhoff Systems Part I, Order 34 (2016), 45–68. https://doi.org/10.1007/s11083-016-9388-x.
  9. J. Harding, A.B. Romanowska, Varieties of Birkhoff Systems Part II, Order 34 (2016), 69–89. https://doi.org/10.1007/s11083-016-9392-1.
  10. Y.S. Pawar, Characterizations of Normal Lattices, Indian J. Pure Appl. Math. 24 (1993), 651–656.
  11. U.M. Swamy, S. Ramesh, Birkhoff Centre of an Almost Distributive Lattice, Int. J. Algebra 3 (2009), 539–546.
  12. U.M. Swamy, G.C. Rao, Almost Distributive Lattices, J. Aust. Math. Soc. Ser. A 31 (1981), 77–91. https://doi.org/10.1017/s1446788700018498.