Tripled Coincidence Points of Mappings in Partially Ordered 0-Complete Partial Metric Spaces
Main Article Content
Abstract
In this paper, we introduce the concept of a tripled coincidence point for a pair of nonlinear contractive mappings F : X3 → X and g : X → X in partially ordered 0-complete partial metric spaces and obtain existence and uniqueness theorems. Our results generalize, extend, unify and complement recent tripled coincidence point theorems established by Marin Borcut, Vasile Berinde [M. Borcut, V. Berinde, Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Applied Mathematical and Computation 218 (2012) 5929-5935], Marin Borcut [M. Borcut, Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Applied Mathematical and Computation 218 (2012) 7339-7346], Hassen Aydi, Erdal Karapinar, Mihail Postolache [H. Aydi, E. Karapinar, M. Postolache, Tripled coincidence point theorems for weak φ-contractions in partially ordered metric spaces, Fixed Point Theory and Applications 2012, 2012:44, doi: 10.1186/1687-1812-2012-44] and Binayak S. Choudhury, Erdal Karapinar and Amaresh Kundu [B. Choudhury, E. Karapinar, A. Kundu, Tripled coincidence point theorems for nonlinear contractions in partially ordered metric spaces, International Journal of Mathematics and Mathematical Sciences,2012, in press]. Examples to support our new results are given.
Article Details
References
- M. Abbas, M. Ali Khan and S. Radenović, Common coupled fixed point theorems in cone metric spaces for w-compatible mappings, Applied Mathematics and Computation 217 (2010) 195-202.
- M. Abbas, T. Nazir, S. Romaguera, Fixed point results for generalized cyclic contraction mappings in partial metric spaces, Rev. R. Acad.Cienc.Exactas Fis.Nat. Ser. A Mat. RACSAM. doi: 10.1007/s13398-011-0051-5.
- T. Abdeljawad, E. Karapinar, K. Tas, Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett. 24 (2011) 1900-1904.
- I. Altun, S. Romaguera, Characterizations of partial metric completeness in terms of weakly contractive mappings having fixed point, Appl. Anal. Discrete Math. (to appear) DOI: 10.2298/AADM120322009A
- H. Aydi, E. Karapinar, M. Postolache, Tripled coincidence point theorems for weak ïª-contractions in partially ordered metric spaces, Fixed Point Theory and Applications 2012, 2012:44, doi: 10.1186/1687-1812-2012-44.
- H. Aydi, E. Karapinar, B. Samet, Remarks on some recent fixed point theorems, Fixed Point Theory and Applications 2012, 2012:76, doi: 10.1186/1687-1812-2012-76
- M. Bakutin, R. Kopperman, S. Matthews, H. Pajoohesh, Partial metric spaces, Am. Math. Monthly 116 (2009) 708-718.
- V. Berinde, M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Analysis 74 (2011) 4889-4897.
- V. Berinde, M. Borcut, Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Applied Mathematics and Computation 218 (2012) 5929-5936.
- T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered cone metric spaces and applications, Nonlinear Analysis 65 (2006) 825-832.
- A. G. Bin Ahmad, Z. M. Fadail, V. ĆojbaÅ¡ić Rajić, S. Radenović, Nonlinear contractions in 0-complete partial metric spaces, Abstract and Applied Analysis, Vol. 2012, article ID 451239, 12 pages, doi:10.1155/2012/451239.
- M. Borcut, Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Applied Mathematics and Computation 218 (2012) 7339-7346.
- B. S. Coudhury, E. Karapinar and A. Kundu, Tripled coincidence point theorems for nonlinear contractions in partially ordered metric spaces, International Journal of Mathematics and Mathematical Sciences, 2012, in press.
- B. S. Choudhury and A.Kundu, A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Analysis 8 (2010) 2524-2531.
- Z. Golubović, Z. Kadelburg, S. Radenović , Coupled coincidence points of mappings in ordered partial metric spaces, Abstract and Applied Analysis, Vol. 2012, Article ID 192581, 18 pages, doi: 10.1155/2012/192581.
- N. Hussain, Z. Kadelburg, S. Radenović, Comparison functions and fixed point results in partial metric spaces, Abstract and Applied Analysis, Vol. 2012, Article ID 605781, 15 pages, doi:10.1155/2012/605781
- D. Ilić, V. Pavlović and V. RakoÄević, Some new extensions of Banach's contractions principle in partial metric spaces, Appl. Math. Lett. 24 (2011) 1326-1330.
- M. Jleli, V. ĆojbaÅ¡ić Rajić, B. Samet and C. Vetro, Fixed point theorems on ordered metric spaces and applications to nonlinear beam equations, Journal of Fixed Point Theory and its Applications (2012), doi: 10.1007/s11784-012-0081-4.
- Z. Kadelburg, H. K. Nashine, S. Radenović, Fixed point results under various contractive conditions in partial metric spaces, Rev. R. Acad.Cienc.Exactas Fis.Nat. Ser. AMat. RACSAM. doi: 10.1007/s13398-012-0066-6.
- V. Lakshmikantham and Lj. Ćirić, Coupled fixed point theorems for nonlinear contractions in partial ordered metric space, Nonlinear Analysis 70 (2009) 4341-4349.
- N. V. Luong and N. X. Thuan, Coupled fixed point theorems in partially ordered metric spaces, Bulletin of Mathematical Analysis and Applications 4 (2010) 16-24.
- N. V. Luong and N. X. Thuan, Coupled fixed points in partially ordered metric spaces and application, Nonlinear Analysis, 74(2011) 983-992.
- S. G. Matthews, Partial metric topology, Research Report 212. Dept. of Computer Science, University of Warwick, 1992.
- S. G. Matthews, Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci. 728 (1994), 183-197.
- S. Oltra, S. Romaguera, E. A. Saanchez-Perez, Bicompleting weightable quasi-metric spaces and partial metric spaces, Rend. Circ.Mat. Palermo 51(2002) 151-162.
- S. Oltra and O. Valer, Banach's fixed point theorem for partial metric spaces, Rend. Istit. Math. Univ. Trieste 36 (2004) 17-26.
- S. Radenović, Z. Kadelburg, D. Jandrlić, A. Jandrlić, Some results on weakly contractive maps, Bulletin of the Iranian Mathematical Society (2011), available online since 30 March 2011.
- S. Romaguera, Fixed point theorems for generalized contractions on partial metric spaces, Topol. Appl. 159 (2012) 194-199.
- B. Samet, Coupled fixed point theorems for a generalized Meir-Keeler Contraction in partially ordered metric spaces, Nonlinear Analysis 72 (2010) 4508-4517.