The Complementary Hankel Type Transformations Of Arbitrary Order
Main Article Content
Abstract
In this paper four self-reciprocal integral transformations of Hankel type are defined. The simultaneous use of trans-formations H1,α,β and H2,α,β (which are denoted by Hα,β) allows us to solve many problems of Mathematical Physics involving the differential operator ∆α,β= D2+4αx-1D, whereas the pair of transformations H3,α,β and H4,α,β (which we express by Hα,β) permits us to tackle those problems containing its adjoint operator, no matter what the real value of α - β be. These transformations are also investigated in a space of generalized functions according to the mixed Parseval equation.
Article Details
References
- Altenburg G; Bessel Transformation in Raumen von Grundfunktionen uber dem Interval Ω = (0, ∞) und deven Dualraumen, Math. Nachr, 108 (1982), 197-218.
- Dubey L.S. and Pandey J.N., on the Hankel Transform of Distribution, Tohoku Math. J. 27, (1975), 337-354.
- Gray A., Mathews, G.B. and MacRobert T.M., A Treatise on Bessel Functions and their Applications to Physics, Macmillan, London, 1952.
- Koh E.L., The Hankel Transformation of Negative order for Distributions of Rapid Growth, SIAM J. Math. Anal. 1(1970), 322-327.
- Lee W.Y., On Schwartz's Hankel Transformation of certain spaces of Distributions, SIAM J. Math. Anal. 6 (1975), 427-432.
- Macauley-Owen P, Parseval Theorem for Hankel Transform, Proc. London Math. Soc. 45 (1939), 458-474.
- Mendez Perez, J.M.R., On the Bessel Transforms, Jnanabha 17(1987), 79-88.
- Mendez Perez J.M.R., On the Bessel Transformation of Arbitrary Order, Math. Nachr, 136 (1988), 233-239.
- Mendez Perez J.M.R, A mixed Parseval Equation and the Generalized Hankel Transformation, Proc. Amer. Math. Soc., 102(1988), 619-624.
- Shuitman A, On a certain Test Function space for Schwartz's Hankel Transform, Delft Prog, Rep.2 (1977), 192-206.
- Schwartz L., Theorie des Distributions, Herman Paris 1966.
- Schwartz A.L, An Inversion Theorem for Hankel Transform, Proc. Amer. Math. Soc., 22 (1969), 713-717.
- Titchmarsh E.C., Introduction to the Theory of Fourier Integrals, Oxford Univ. Press, London, 1959.
- Watson G.N., A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge , 1958.
- Zemanian A.H., A Distributional Hankel Transformation, SIAM J. Appl. Math. 14(1966), 561-576.
- Zemanian A.H., Hankel Transforms of Arbitrary Order, Duke Math. J. 34 (1967), 761-769.
- Zemanian A.H., Generalized Integral Transformations Interscience. N.Y. 1968.