Strong and â–³-Convergence of Modified Two-Step Iterations for Nearly Asymptotically Nonexpansive Mappings in Hyperbolic Spaces
Main Article Content
Abstract
The aim of this article is to establish a â–³-convergence and some strong convergence theorems of modified two-step iterations for two nearly asymptotically nonexpansive mappings in the setting of hyperbolic spaces. Our results extend and generalize the previous work from the current existing literature.
Article Details
References
- M. Abbas, Z. Kadelburg and D.R. Sahu, Fixed point theorems for Lipschitzian type mappings in CAT(0) spaces, Math. Comput. Model. 55 (2012), 1418-1427.
- R.P. Agarwal, Donal O'Regan and D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, Nonlinear Convex Anal. 8(1) (2007), 61-79.
- I. Beg, An iteration scheme for asymptotically nonexpansive mappings on uniformly convex metric spaces, Nonlinear Anal. Forum, 6 (2001), 27-34.
- M.R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Vol. 319 of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, Germany, 1999.
- S.S. Chang, L. Wang, H.W. Joesph Lee, C.K. Chan, L. Yang, Demiclosed principle and ∆-convergence theorems for total asymptotically nonexpansive mappings in CAT(0) spaces, Appl. Math. Comput. 219(5) (2012), 2611-2617.
- S. Dhompongsa and B. Panyanak, On 4-convergence theorem in CAT(0) spaces, Comput. Math. Appl. 56 (2008), 2572-2579.
- K. Goebel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174.
- K. Goebel and W.A. Kirk, Iterations processes for nonexpansive mappings, Contemp. Math. 21 (1983), 115-123.
- M. Gromov, Hyperbolic groups. Essays in group theory (S. M. Gersten, ed). Springer Verlag, MSRI Publ. 8 (1987), 75-263.
- S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150.
- S.H. Khan and M. Abbas, Strong and 4-convergence of some iterative schemes in CAT(0) spaces, Comput. Math. Appl. 61 (2011), 109-116.
- A.R. Khan, H. Fukhar-ud-din and M.A.A. Khan, An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces, Fixed Point Theory Appl. 2012 (2012), Article ID 54.
- W.A. Kirk, Krasnoselskii's iteration process in hyperbolic space, Numer. Funct. Anal. Optim 4 (1982), 371-381.
- W.A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. 68 (2008), 3689-3696.
- U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans. Amer. Math. Soc. 357 (2005), 89-128.
- T.C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976), 179-182.
- Q.H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 259 (2001), 1-7.
- Q.H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member, J. Math. Anal. Appl. 259 (2001), 18-24.
- W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
- B. Nanjaras and B. Panyanak, Demiclosed principle for asymptotically nonexpansive mappings in CAT(0) spaces, Fixed Point Theory Appl. 2010 (2010), Art. ID 268780.
- Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73(1967), 591-597.
- M.O. Osilike, S.C. Aniagbosor, Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. and Computer Modelling 32(2000), 1181-1191.
- S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal.: TMA, Series A, Theory Methods, 15(6)(1990), 537-558.
- B.E. Rhoades, Fixed point iteration for certain nonlinear mappings, J. Math. Anal. Appl. 183(1994), 118-120.
- A. S ¸ahin and M. Ba ¸sarir, On the strong convergence of a modified S-iteration process for asymptotically quasi-nonexpansive mappings in a CAT(0) space, Fixed Point Theory Appl. 2013 (2013), Article ID 12.
- D.R. Sahu, Fixed points of demicontinuous nearly Lipschitzian mappings in Banach spaces, Comment. Math. Univ. Carolinae 46(4) (2005), 653-666.
- D.R. Sahu and I. Beg, Weak and strong convergence for fixed points of nearly asymptotically nonexpansive mappings, Int. J. Mod. Math. 3 (2008), 135-151.
- G.S. Saluja, Strong convergence theorem for two asymptotically quasinonexpansive mappings with errors in Banach space, Tamkang J. Math. 38(1) (2007), 85-92.
- G.S. Saluja, Convergence result of (L, α)-uniformly Lipschitz asymptotically quasi-nonexpansive mappings in uniformly convex Banach spaces, JËœna ¯n ¯abha 38 (2008), 41-48.
- H.F. Senter, W.G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44 (1974), 375-380.
- N. Shahzad, A. Udomene, Approximating common fixed points of two asymptotically quasi-nonexpansive mappings in Banach spaces, Fixed Point Theory and Applications, 2006 (2006), Article ID 18909.
- T. Shimizu and W. Takahashi, Fixed points of multivalued mappings in certain convex metric spaces, Topol. Methods Nonlinear Anal. 8(1) (1996), 197-203.
- W. Takahashi, A convexity in metric spaces and nonexpansive mappings, Kodai Math. Semin. Rep. 22 (1970), 142-149.
- K.K. Tan and H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178, 301-308, 1993.
- K.K. Tan and H.K. Xu, Fixed point iteration processes for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 122(1994), 733-739.