On The Integral Representation of Strictly Continuous Set-Valued Maps
Main Article Content
Abstract
Let T be a completely regular topological space and C(T) be the space of bounded, continuous real-valued functions on T. C(T) is endowed with the strict topology (the topology generated by seminorms determined by continuous functions vanishing at in_nity). R. Giles ([13], p. 472, Theorem 4.6) proved in 1971 that the dual of C(T) can be identi_ed with the space of regular Borel measures on T. We prove this result for positive, additive set-valued maps with values in the space of convex weakly compact non-empty subsets of a Banach space and we deduce from this result the theorem of R. Giles ([13], theorem 4.6, p.473).
Article Details
References
- R. C. Buck, Bounded continuous functions on locally compact space, Michigan Math. J. 5 (1958), 95-104.
- R. C. Buck, operator algebras and dual spaces, Proc. Amer. Math. Soc. 3.681- 687 (1952).
- BOURBAKI, El ´ements de Maths. Livre VI Int ´egration-Chp. IX, Ed. Hermann, Paris 1969.
- A. Choo, strict topology on spaces of continuous vector-valued functions, Canad. J. Math. 31 (1979), 890-896.
- A. Choo, Separability in the strict topology, J. Math. Anal. Appl. 75 (1980), 219-222.
- H. S Collins, On the space l∞(S), with the stict topology, Math. Zeitschr. 106, 361-373 (1968).
- H. S. Collins and J. R. Dorroh, Remarks on certain function spaces, Math. Ann., 176, (1968), 157-168 .
- J. B. Conway, the strict topology and compactness in the space of measures, Bull. Amer. Math. Soc. 72, (1966), 75-78 .
- , J. Diestel, Sequences and Series in Banach spaces, Graduate Texts in Math., vol.92, Springer-Verlag, 1984.
- Drewnowsky, Topological Rings of Sets, Continuous Set Functions, Integration. III, Bull. Acad. Polon. Sci., S ´er. Sci. Math., Astronom. et Phys., 20 (1972), 441-445.
- N. Dunford and J. Schwartz, Linear operators Part I, New York: Interscience 1958.
- R. A. Fontenot, Strict topologies for vector-valued functions, Canadian. J. Math. 26 (1974), 841-853.
- R. Giles, A Generalization of the Strict Topology, Trans. Amer. Math. Soc. 161(1971), 467-474.
- D. Gulick, The σ-compact-open topology and its relatives, Math. Scand.. 30 (1972), 159-176.
- J. Hoffman-J ¨orgenson, A generalization of strict topology, Math. Scand. 30 (1972), 313-323.
- L. H ¨ormander, Sur la fonction d'appui des ensembles convexes dans un espace localement convexe, Arkiv F ¨or MATEMATIK. 3 nr 12 (1954).
- A. K. Katsaras, On the strict topology in the non-locally convex setting II, Acta. Math. Hung. 41 (1-2) (1983), 77-88.
- A. K. Katsaras, Some locally convex spaces of continuous vector-valued functions over a completely regular space and their duals, Trans. Amer. Math. Soc. 216 (1979), 367-387.
- L. A. Khan, The strict topology on a space of vector-valued functions, Proc. Edinburgh Math. Soc., 22 (1979), 35-41.
- G. K ¨othe, Topological Vector spaces I Second printing, Springer-Verlag, NewYork, 1983.
- R. Pallu De La Barriere, Publications Math ´ematiques de l'Universit ´e Pierre et Marie Curie No33.
- F. D. Sentilles, Bounded continuous functions on a completely regular space, Trans. Amer. Math. Soc., 168 (1972), 311-336.
- K. K. Siggini, Narrow Convergence in Spaces of Set-valued Measures, Bull. of The Polish Acad. of Sc. Math. Vol. 56, Nâ—¦1, (2008).
- K. K. Siggini, Sur les propri ´et ´es de r ´egularit ´e des mesures vectorielles et multivoques sur les espaces topologiques g ´en ´eraux, Th`ese de Doctorat de l'Universit ´e de Paris 6.
- C. Todd, Stone-Weierstrass theorems for the strict topolgy, Proc. Amer. Math. Soc. 16 (1965), 657-659.
- A. C. M. Van Rooij, Tight functionals and the strict topology, Kyungpook Math.J.7 (1967), 41-43.
- J. Wells, Bounded continuous vector-valued functions on a locally compact space, Michigan Math. J. 12 (1965), 119-126.
- X. Xiaoping, C. Lixin, L. Goucheng, Y. Xiaobo, Set valued measures and integral representation, Comment.Math.Univ.Carolin. 37,2 (1996)269-284