Applications of Extremal Theorem to a Class of p-Valent Analytic Functions

Main Article Content

Liangpeng Xiong, Xiaoli Liu

Abstract

A subclass J_{p,\lambda}^{m,l}(\xi,\alpha) of p-valent analytic functions with a generalized multiplier transformation operator is introduced. We discuss the compactness as well as the extreme points of J_{p,\lambda}^{m,l}(\xi,\alpha) under the topology of uniform convergence. Finally, as one of the applications of extremal theorem, we solve the sharp distortion inequalities problem. Several related basic results and remarks about the old or new classes are also presented.

Article Details

References

  1. O. Altintas, H. Irmak and H.M. Srivastava, Fractional calculus and certain starlike functions with negative coefficients, Comput. Math. Appl., 30(2)(1995), 9-16.
  2. O. Altintas, On a subclass of certain starlike functions with negative coefficients, Math. Japonica, 36(3)(1991), 1-7.
  3. Y.Abu Muhanna, L.L.Li and S.Ponnusamy, Extremal problems on the class of convex functions of order -1/2, Archiv der mathematik, 103(6)(2014), 461-471.
  4. R.M.Ali, S.R.Mondal and V.Ravichandran, On the Janowski convexity and starlikeness of the confluent hypergeo-metric function, Bulletin of the belgian mathematical society-simon stevin, 22(2)(2015), 227-250.
  5. A.Catas, On certain classes of p-valent functions defined by multiplier transformations, in Proceedings of the international Symposium on Geometric Function Theory and Applications: GFTA 2007 (Eds. S. Owa, Y. Polatoglu), TC Istanbul University Publications, Turkey, 2008, pp. 241-250.
  6. H.E.Darwish and M.K.Aouf, Generalizations of modified-Hadamard products of p-valent functions with negative coefficients, Math. Comput. Modelling 49(1-2)(2009), 38-45.
  7. T.Domokos, On a subclass of certain starlike functions with negative coefficients, Stud. Univ. Babe ¸s-Bolyai Math., 36(1991), 29-36.
  8. J.Dziok, Applications of extreme points to distortion estimates, Appl.Math.Comput. 215(2009), 71-77.
  9. E.Deniz and H.Orhan, Loewner chains and univalence criteria related with ruscheweyh and salagean derivatives, Journal of applied analysis and computation, 5(3)(2015), 465-478.
  10. R.M.El-Ashwah and M.K.Aouf, Some properties of new integral operator, Acta Univ.Apulensis Math.Inform., 24(2010), 51-61.
  11. D.Hallenbeck and T.H.MacGregor, Linear Problems and Convexity Techniques in Geometric Function Theory, 39-46. Pitman Advanced Publishing Program, Boston, Pitman, (1984)
  12. S.S.Kumar, H.C.Taneja and V.Ravichandran, Classes of multivalent functions defined by Dzoik-Srivastava linear operator and multiplier transformations, Kyungpook Math. J., 46(2006), 97-109.
  13. S.Kanas and D.Raducanu, Some class of analytic functions related to conic domains, Mathematica slovaca, 64(5)(2014), 1183-1196.
  14. J.L.Liu, Certain sufficient conditions for strongly starlike functions associated with an integral operator, Bull.Malays.Math.Sci.Soc., 34(1)(2011), 21-30.
  15. G.Murugusundaramoorthy and K.Vijaya, Second hankel determinant for bi-univalent analytic functions associated with hohlov operator, International journal of analysis and applications, 8(1)(2015), 22-29.
  16. H.Orhan and H.Kiziltunc, A generalization on subfamily of p-valent functions with negative coefficients, Appl. Math.Comput., 155(2004), 521-530.
  17. J.Patel, P.Sahoo, Certain subclasses of multivalent analytic functions, Indian J. Pure Appl. Math., 34(3)(2003), 487-500.
  18. J.K.Prajapat, Subordination and superordination preserving properties for generalized multiplier transformation operator, Math. Comput. Modelling, 55(2012), 1456-1465.
  19. H.M.Srivastava, S.Owa and S.K.Chatterjea, A note on certain classes of starlike functions, Rend.Sem.Mat.Univ.Padova, 77(1987), 115-124.
  20. Poonam Sharma, J.K.Prajapat and R.K.Raina, Certain subordination results involving a generalized multiplier transformation operator, Journal of Classical Analysis, 2(1)(2013), 85-106.
  21. L.P.Xiong, Some general results and extreme points of p-valent functions with negative coefficients, Demonstratio mathematica, 44(2)(2011), 261-272.