Fejer-Hadamard Inequlality for Convex Functions on the Coordinates in a Rectangle from the Plane
Main Article Content
Abstract
We give Fejer-Hadamard inequality for convex functions on coordinates in the rectangle from the plane. We define some mappings associated to it and discuss their properties.
Article Details
References
- S. Abramovich, G. Farid and J. E. Pecaric, More about Jensens inequality and Cauchys means for superquadratic functions, J. Math. Inequal. 7(1) (2013), 11-24.
- S. I. Butt, J. E. Pecaric and Atiq Ur Rehman, Non-symmetric Stolarsky means, J. Math. Inequal. 7(2) (2013), 227-237.
- S. S. Dragomir, J. E. Pecaric and J. Sáandor, A note on the Jensen-Hadamard inequality, L' Anal. Num. Theor. L'Approx. (Romania) 19 (1990), 21-28.
- S. S. Dragomir, D. Barbu and C. Buse, A probabilistic argument for the convergence of some sequences associated to Hadamard's inequality, Studia Univ. Babe ¸s-Bolgai, Mathematica 38 (1993), 29-34.
- S. S. Dragomir, On Hadamards inequality for convex functions on the co-ordinates in a rec- tangle from the plane, Taiwanese J Math. 4 (2001), 775-788.
- S. S. Dragomir, On Hadamard's inequality for convex functions, Mat. Balkanica 6 (1992), 215-222.
- S. S. Dragomir, Refinements of the Hermite-Hadamard inequality for convex functions, J. Inequal. Pure Appl. Math. 6(5) (2005), Article 140.
- S. S. Dragomir and N. M. lonescu, Some integral inequalities for differentiable convex functions. Coll. Pap. of the Fac. of Sci. Kragujevac (Yugoslavia) 13 (1992), 11-16.
- S. S. Dragomir, Some integral inequlities for differentiable convex functions, Contributions, Macedonian Acad. of Sci. and Arts (Scopie) 16 (1992), 77-80.
- S. S. Dragomir, and N. M. Ionescu, Some remarks in convex functions, L'Anal. Num. Theor. L'Approx. (Romania), 21 (1992), 31-36.
- L. Fejér,Ãœber die Fourierreihen, II. Math. Naturwiss Anz Ungar. Akad. Wiss. 24 (1906), 369-390
- D. S. Mitrinovisc, J. E. Pecaric and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.
- D. S. Mitrinovi ´c, I. B. Lackovic, Hermite and convexity, Aequationes Math. 28 (1985).
- C. P. Niculescu, L. E. Persson, Convex functions and their applications: A contemporary approach, Springer, New York, 2006.
- J. E. Pe caric and S. S. Dragomir, A generalisation of Hadamard's inequality for isotonic linear functionals, Rodovi Math. (Sarajevo) 7 (1991), 103-107.
- J. E. Pecaric, F. Proschan, Y. L. Tong, Convex Functions, Partial Ordering, and Stasitcal Applications, Academic Press, Inc. 1992.
- J. E. Pecaric and S. S. Dragomir, On some integral inequalities for convex functions, Bull. Mat. Inst. Pol. Iasi 36 (1990), 19-23.