Existence of Heteroclinic Solutions to Fourth Order Φ-Laplacian Dynamical Equations

Main Article Content

K. R. Prasad, P. Murali, N.V.V.S. Suryanarayana

Abstract

In this paper, we derive sufficient conditions for the existence of heteroclinic solutions to fourth order Φ-Laplacian dynamical equation on infinite time scales by using variational approach as minimizers of an action functional on special functional space. And also, as an application we demonstrate our result with an example.

Article Details

References

  1. C. Avrameseu and C. Vladimirecu, Existence of solution to second order differential equations having finite limits at ±∞, Elec. J. Diff. Equa., Vol.18(2004), pp. 1-12.
  2. M.Bohner and A.C.Peterson, Dynamic Equations on Time scales, An Introduction with Applications, Birkhauser, Boston,MA,(2001).
  3. A. Cabada and J. A. Cid, Solvability of some Φ-Laplacian singular difference equation defined on integers, The Arab. J. Scie. Engi., Vol 34(2009), No.ID, pp.75-81.
  4. A. Cabada and J. A. Cid, Heteroclinic solution for non-autonomous boundary value problem with singular Φ-Laplacian operator, Discr. Cont. Dyna. Syst., Vol 18(2009), pp. 118-112.
  5. A. Cabada and S. Tersion, Existence of heteroclinic solutions for discrete P-Laplacian problems with a parameter, Nonlinear; Real world appl., doi:10.1016/j.nonwrg.2011.02.022.
  6. V. Lakshmikantham, S. Sivasundaram and B. Kaymakcalan, Dynanic Systems on Measure Chains, Mathematics and its Applications, 370, Kluwer, Dordrecht, 1996.
  7. C. Marcelli and F. Papalini, Heteroclinic solution for second order non-autonoms boundary value problem on real line, Diff. Equa. Dyna. Syst., Vol11(2003), pp.333-353.
  8. C. Marcelli and F. Papalini, Heteroclinic connection for fully nonlinear non-autonums second order differential equations, J. Diff. Equa., 241(2007), pp.160-183.