On Multi-Valued Weakly Picard Operators in Hausdorff Metric-Like Spaces
Main Article Content
Abstract
In this paper, we study multi-valued weakly Picard operators on Hausdorff metric-like spaces. Our results generalize some recent results and extend several theorems in the literature. Some examples are presented making effective our results.
Article Details
References
- IA. Rus, A. Petrusel and A. Sintamarian, Data dependence of the fixed points set of multi-valued weakly Picard operators, Stud. Univ. Babe?s-Bolyai, Math. 46 (2001), 111-121.
- IA. Rus, A. Petrusel and A. Sintamarian, Data dependence of the fixed points set of some multi-valued weakly Picard operators, Nonlinear Anal. 52 (2003), 1947-1959.
- T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Am. Math. Soc. 136 (2008), 1861-1869.
- M. Jleli, H. K. Nashine, B. Samet and C. Vetro, On multi-valued weakly Picard operators in partial Hausdorff metric spaces, Fixed Point Theory Appl. 20015 (2015), Art. ID 52.
- I. Altun and H. Simsek, Some fixed point theorems on dualistic partial metric spaces, J. Adv. Math. Stud. 1 (2008), 1-8.
- E. Karapinar, H. Aydi, A. Felhi and S. Sahmim, Hausdorff Metric-Like, generalized Nadler's Fixed Point Theorem on Metric-Like Spaces and application, Miskolc Math. Notes (in press).
- C.T. Aage and J.N. Salunke, The results on fixed points in dislocated and dislocated quasi-metric space, Appl. Math. Sci, 2(59) (2008), 2941-2948.
- S.G. Matthews, Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Annals of the New York Academi of Sciences, 728 (1994), 183-197.
- H. Aydi, M. Abbas and C. Vetro, Partial Hausdorff metric and Nadlers fixed point theorem on partial metric spaces, Topol. Appl. 159 (2012), 3234-3242.
- R.D. Daheriya, R. Jain and M. Ughade, Some fixed point theorem for expansive type mapping in dislocated metric space, ISRN Math. Anal. 2012 (2012), Art. ID 376832.
- A. Isufati, Fixed point theorems in dislocated quasi-metric space, Appl. Math. Sci. 4(5) (2010), 217-233.
- Amini A. Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl. 2012 (2012), Art. ID 204.
- R. George, Cyclic contractions and fixed points in dislocated metric spaces, Int. J. Math. Anal. 7(9) (2013), 403-411.
- G.E. Hardy and T.D. Rogers, A generalization of a fixed point theorem of Reich, Canadian Mathematical Bulletin, 16 (1973), 201C206.
- E. Karapinar and P. Salimi, Dislocated metric space to metric spaces with some fixed point theorems, Fixed Point Theory Appl. 2013 (2013), Art. ID 222.
- P.S. Kumari, W. Kumar and I.R. Sarma, Common fixed point theorems on weakly compatible maps on dislocated metric spaces, Math. Sci. 6 (2012), 71.
- PS. Kumari, Some fixed point theorems in generalized dislocated metric spaces, Math. Theory Model. 1(4) (2011), 16-22.
- S.B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
- I.R. Sarma and P.S. Kumari, On dislocated metric spaces, Int. J. Math. Arch. 3(1) (2012), 72-77.
- R. Shrivastava, ZK. Ansari and M. Sharma, Some results on fixed points in dislocated and dislocated quasi-metric spaces, J. Adv. Stud. Topol. 3(1) (2012), 25-31.
- M. Shrivastava, K. Qureshi and A.D. Singh, A fixed point theorem for continuous mapping in dislocated quasi-metric spaces, Int. J. Theor. Appl. Sci. 4(1) (2012), 39-40.
- K. Zoto, Some new results in dislocated and dislocated quasi-metric spaces. Appl. Math. Sci. 6(71) (2012), 3519-3526.