Integral Inequalities of Hermite-Hadamard Type for Harmonic (h,s)-Convex Functions
Main Article Content
Abstract
In this paper, we introduce a new concept of harmonic (h,s)-convex functions in the second sense which generalizes the harmonic convex functions. Some Hermite-Hadamard-Fejer type integral inequalities are derived. Some special cases also discussed. Results derived in this paper represent significant refinement and improvement of the known results.
Article Details
References
- G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335(2007), 1294-1308.
- W. W. Breckner, Stetigkeitsaussagen fiir eine Klasseverallgemeinerter convexer funktionen in topologischen linearen Raumen. Pupl. Inst. Math. 23 (1978), 13-20.
- G. Cristescu and L. Lupsa, Non-connected Convexities and Applications, Kluwer Academic Publisher, Dordrechet, Holland, (2002).
- G. Cristescu, Improved integral inequalities for product of convex functions, J. Inequal. Pure Appl. Math., 6(2)(2005), Article ID 35.
- S.S. Dragomir, Inequalities of Hermite-Hadamard type for HA-convex functions, Preprint RGMIA Res. Rep. Coll. 18(2015), Article ID 38.
- J. Hadamard, Etude sur les proprietes des fonctions entieres e.t en particulier dune function consideree par Riemann. J. Math. Pure Appl., 58(1893), 171-215.
- C. Hermite, Sur deux limites d'une intgrale dfinie. Mathesis, 3(1883), 82.
- I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions. Hacet, J. Math. Stats., 43(6)(2014), 935-942.
- I. Iscan, Ostrowski type inequalities for harmonically s-convex functions, Konuralp J. Math., 3(1)(2015), 63-74.
- C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications, Springer-Verlag, New York, (2006).
- M. A. Noor, K. I. Noor, M. U. Awan and S. Costache, Some integral inequalities for harmonically h-convex functions, U.P.B. Sci. Bull. Series A, 77(1)(2015), 5-16.
- M. A. Noor, K. I. Noor and M. U. Awan, Integral inequalities for harmonically s-Godunova-Levin functions, FACTA Uni. (NIS) Ser. Math. Infor., 29(4)(2014), 415-424.
- M. A. Noor, K. I. Noor and M. U. Awan, Integral inequalities for some new classes of convex functions, American J. Appl. Math., 3(2015), 1-5.
- J. Pecaric, F. Proschan, and Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Acdemic Press, New york, (1992).
- H. N. Shi and Zhang, Some new judgement theorems of Schur geometric and Schur harmonic convexities for a class of symmetric functions, J. Inequal. Appl., 2013(2013), Article ID 527.
- G. H. Toader, Some generalizations of the convexity, Proc. Colloq. Approx. Optim, Cluj-Napoca (Romania), 1984, 329-338.
- S. Varoanec, On h-convexity, J. Math. Anal. Appl., 326(2007), 303-311.