Mixed Problem with an Integral Two-Space-Variables condition for a Third Order Parabolic Equation
Main Article Content
Abstract
This paper is concerned with the existence and uniqueness of a strong solution to a mixed problem which combine Dirichlet and integral two space variables conditions for a third order linear parabolic equation. The proof uses a functional analysis method presented, which it is based on an energy inequality and the density of the range of the operator generated by the problem.
Article Details
References
- A. Bouziani and N.-E. Benouar, Mixed problem with integral conditions for a third order parabolic equation, Kobe J. Math. 15 (1998), no. 1, 47-58.
- N.E. Benouar and N.I. Yurchuk, Mixed problem with an integral condition for parabolic equations with the Bessel operator, Differentsial'nye Uravneniya, 27 (1991), 2094-2098.
- A. Bouziani, Mixed problem for certain nonclassical equations with a small parameter, Bulletin de la Classe des Sciences, Acad ´ emie Royale de Belgique, 5 (1994), 389-400.
- A. Bouziani, Solution forte d'un probl` eme de transmission parabolique-hyperbolique pour une structure pluride- mensionnelle, Bulletin de la Classe des Sciences, Acad ´ emie Royale de Belgique, 7 (1996), 369-386.
- A. Bouziani, Mixed problem with integral conditions for a certain parabolic equation, J. of Appl. Math. and Stoch. Anal. 9 (1996), 323-330.
- A. Bouziani, Mixed problem with nonlocal condition for certain pluriparabolic equations, Hiroshima Math. J. 27 (1997), 373-390.
- A. Bouziani and N.E. Benouar, Probl` eme mixte avec conditions int ´ egrales pour une classe d' ´ equations paraboliques, Comptes Rendus de l'Acad ´ emie des Sciences, Paris t.321, S ´ erie I, (1995), 1177-1182.
- A. Bouziani and N.E. Benouar, Probl` emes aux limites pour use classe d' ´ equations de type non classique pour use structure pluri-dimensionnelle, Bull. of the Polish Acad. of Sciences- Mathematics 43,(1995), 317-328.
- B. Cahlon, D.M. Kulkarni and P.Shi, Stewise stability for the heat equation with a nonlocal constraint, SIAM l. Nurner. Anal., 32 (1995), 571-593.
- J. R. Cannon, The solution of the heat equation subject to the specification of energy, Quart. Appl. Math. 21 (1963), 155-160.
- J. R. Cannon, S. P ´ erez Esteva, and J. van der Hoek, A Galerkin procedure for the diffusionequation subject to the specification of mass, SIAM J., Numer. Anal. 24 (1987), no. 3, 499-515.
- J.R. Cannon and J. Van der Hoek, The existence and the continuous dependence for the solution of the heat equation subject to the specification of energy, Boll. Uni. Math. Ital. Suppl. 1 (1981), 253-282.
- J.R. Cannon and J. Van der Hoek, An implicit finite difference scheme for the diffusion of mass in a portion of the domain, Numer. Solutions of PDEs (ed. by J. Noye), North-Holland, Amsterdam (1982), 527 539.
- L. Garding, , Cauchy's Problem for Hyperbolic Equations, Univ. of Chicago Lecture Notes 1957.
- N.I. Ionkin, Solution of boundary value problem in heat conduction theory with nonlocl boundary conditions, Differentsial'nye Uravneniya, 13 (1977), 294-304.
- S. Jones, B. Jumarhon, S. McKee, and J.A.Scott, A mathematical model of biosensor, J. Eng. Math. 30 (1996), 312-337.
- B. Jumarhon, and S. McKee, On the heat equation with nonlinear and nonlocal boundary conditions, J. Math. Anal. Appl. 190 (1995), 806-820.
- B. Jumarhon, and S. McKee, Product integration methods for solving a system of nonlinear Volterra integral equations, J. Comput. Appl. Math. 69 (1996), 285-301.
- N.I. Kamynin, A boundary value problem in the theory of the heat conduction with non-classical boundary condition, Th. Vychisl. Mat. Mat. Fiz. 43 (1964),1006-1024.
- K. Rektorys, Variational Methods in Mathematics, Sciences and Engineering, 2nd ed., Dordrecht, Boston, Reidel 1979.
- P. Shi, Weak solution to an evolution problem with a nonlocal constraint, SIAM. J. Math. Anal. 24 (1993), 46-58.
- N.I. Yurchuk, Mixed problem with an integral condition for certain parabolic equations, Differentsial'nye Uravneniya 22 (1986), 2117-2126.
- G. W. Batten, Jr., Second order correct boundary conditions of the numerical solution of the mixed boundary problem for parabolic equations, Math. Compt., 17 (1963), 405-413.
- N.I. Yurchuk, Mixed problems for linearized Kortweg-de-Vries equations degenerating in time into parabolic equa- tion, Soviet Math., 33 (1986), 435-437.
- A.A. Samarskii, Some problems in differential equations theory, Differents. Uravn. 16 (1980), 1925-1935.