Peter-Weyl Theorem for Homogeneous Spaces of Compact Groups
Main Article Content
Abstract
This paper presents a structured formalism for a constructive generalization of the Peter-Weyl Theorem over homogeneous spaces of compact groups. Let H be a closed subgroup of a compact group G and µ be the normalized G-invariant measure on the compact left coset space G/H. We then present an abstract T H -version of the Peter-Weyl Theorem for the Hilbert function space L2 (G/H, µ).
Article Details
References
- G.B. Folland, A course in Abstract Harmonic Analysis, CRC press, 1995.
- A. Ghaani Farashahi, Abstract operator-valued Fourier transforms over homogeneous spaces of compact groups, Groups, Geometry, Dynamics, in press.
- A. Ghaani Farashahi, Abstract Plancherel (trace) formulas over homogeneous spaces of compact groups, Canadian Mathematical Bulletin, doi:10.4153/CMB-2016-037-6.
- A. Ghaani Farashahi, Abstract harmonic analysis of wave packet transforms over locally compact abelian groups, Banach J. Math. Anal. 11 (1) (2017), 50-71.
- A. Ghaani Farashahi, Abstract harmonic analysis of relative convolutions over canonical homogeneous spaces of semidirect product groups, J. Aust. Math. Soc., 101 (2) (2016) 171-187.
- A. Ghaani Farashahi, Abstract relative Fourier transforms over canonical homogeneous spaces of semi-direct product groups with Abelian normal factor, J. Korean Math. Soc., 101 (2) (2016), 171-187.
- A. Ghaani Farashahi, Convolution and involution on function spaces of homogeneous spaces, Bull. Malays. Math. Sci. Soc. (36) (4) (2013), 1109-1122.
- A. Ghaani Farashahi, Abstract non-commutative harmonic analysis of coherent state transforms, Ph.D. thesis, Ferdowsi University of Mashhad (FUM), Mashhad 2012.
- E. Hewitt and K.A. Ross, Abstract Harmonic Analysis, Vol 1, 1963.
- E. Hewitt and K.A. Ross, Abstract Harmonic Analysis, Vol 2, 1970.
- V. Kisil, Calculus of operators: covariant transform and relative convolutions, Banach J. Math. Anal. 8 (2) (2014), 156-184.
- V. Kisil, Geometry of Möbius transformations. Elliptic, parabolic and hyperbolic actions of SL 2 (R), Imperial College Press, London, 2012.
- V. Kisil, Relative convolutions. I. Properties and applications, Adv. Math. 147 (1) (1999), 35-73.
- G.J. Murphy, C*-Algebras and Operator theory, Academic Press, INC, 1990.
- F. Peter and H. Weyl, Die Vollstndigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe, Math. Ann., 97 (1927) 737-755.