On Chebyshev Functional and Ostrowski-Grus Type Inequalities for Two Coordinates
Main Article Content
Abstract
In this paper, we construct Chebyshev functional and Gruss inequality on two coordinates. Also we establish Ostrowski-Gruss type inequality on two coordinates. Related mean value theorems of Lagrange and Cauchy type are also given.
Article Details
References
- M.W. Alomari, New Grüss type inequalities for double integrals, Appl. Math. Comput. 228 (2014), 102-107.
- N. Barnett, P. Cerone, S.S. Dragomir, J. Roumeliotis and A. Sofo, A survey on Ostrowski type inequalities for twice differentiable mappings and applications. In: Inequality Theory and Applications, Nova Science Publishers, Huntington, 1 (2001) 24-30.
- S.S. Dragomir and Th.M. Rassias (Eds.), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publishers, Dordrecht, 2002.
- S.S. Dragomir and S. Wang, An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. 33 (1997), 15-22.
- G. Farid, M. Marwan, and A. U. Rehman, Fejer-Hadamard inequality for convex functions on the coordinates in a rectangle from the plane, Int. J. Analysis Appl. 10(1) (2016), 40-47.
- G. Grüss, ber das maximum des absoluten Betrages von 1 (b-a) 2 R b a f(x)dx R b a g(x)dx, Math. Z. 39 (1935), 215-226.
- S. Hussain and A. Qayyum , A generalized Ostrowski-Grüss type inequality for bounded differentiable mappings and its applications, J. Inequal. Appl. 2013 (2013) Art. ID 1.
- J. Jakˇ seti ´ c, J. Peˇ cari ´ c and Atiq ur Rehman, Cauchy means involving Chebychev functional, Proc. A. Razmadze Math. Inst. 151 (2009), 43-54.
- M. Matic , J. Peˇ cari ´ c and N. Ujevi ´ c , On new estimation of the remainder in generalized Taylor's formula, Math. Inequal. Appl. 2(3) (1999), 343-361.
- A.Mcd. Mercer and P. Mercer, New proofs of the Grüss inequality, Aust. J. Math. Anal. Appls. 1(2) (2004) Art. ID 12.
- D.S. Mitrinovi ´ c, J.E. Peˇ cari ´ c, and A.M. Fink, Classical and New Inequalities in Analysis, Mathematics and Its Applications (East European Series), vol. 61, Kluwer Academic, Dordrecht, 1993.
- A. Ostrowski, Uber die Absolutabweichung einer differentiebaren Funktion von ihrem Integralmittelwert Comment. Math. Helv. 10 (1938) 226-227.
- A. M. Ostrowski, On an integral inequality. Aequationes Math. 4 (1970) 358-373.
- B.G. Pachpatte, On Grüss type inequalities for double integrals, J. Math. Anal. Appl. 267 (2002) 454-459.
- J. E. Peˇ cari ´ c, On the Ostrowski generalization of ˇ Cebyˇ sev's inequality, J. Math. Anal. Appl., 102 (1984) 479-487.
- A. Rafiq, N.A. Mir and F. Zafar, A generalized Ostrowski-Grüss type inequality for twice differentiable mappings and applications, JIPAM. J. Inequal. Pure Appl. Math, 7(4) (2006), Art. ID 124.