Fejer Type Inequalities for Harmonically (s,m)-Convex Functions
Main Article Content
Abstract
In this paper, a new weighted identity involving harmonically symmetric functions and differentiable functions is established. By using the notion of harmonic symmetricity, harmonic (s,m)-convexity, analysis and some auxiliary results, some new Fejér type integral inequalities are presented for the class of harmonically (s,m)-convex functions.
Article Details
References
- I. A. Baloch, I.IÅŸcan, Some Ostrowski Type Inequalities For Harmonically (s,m)-convex functoins in Second Sense, International Journal of Analysis, 2015 (2015), Article ID 672675.
- P. S. Bullen, Handbook of Means and Their Inequalities, Mathematics and its Applications, Volume 560, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.
- W.W. Breckner, tetigkeitsaussagen f ¨ ur eine klasse verallgemeinerter konvexer funktonen in topologischen lin- earen Räumen, Publ. Inst. Math. (Beograd), 23 (1978),13-20.
- F. Chen and S. Wu, Fejér and Hermite-Hadamard type inequalities for harmonically convex functions, Journal of Applied Mathematics 2014 (2014), Article ID 386806.
- F. Chen and S.Wu, Hermite-Hadamard type inequalities for harmonically s-convex functions, Sci. World J. 2014 (2014), Article ID 279158.
- S. S. Dragomir, R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (5) (1998) 91-95.
- S. S. Dragomir, C.E.M. Pearce, Selected topics on Hermite-Hadamard type inequalities and applications, RGMIA Monographs, Victoria University, 2000.
- V. N. Huy and N. T. Chung, Some generalizations of the Fejér and Hermite-Hadamard inequalities in Hölder spaces, J. Appl. Math. Inform. 29 (2011), no. 3-4, 859-868.
- J. Hua, B.-Y. Xi, and F. Qi, Hemite-Hadamard type inequalities for geometrically- arithmetically s-convex functions, Commun. Korean Math. Soc. 29 (2014), No. 1, 51-63.
- J. Hua, B. -Y. Xi and F. Qi, Inequalities of HermiteHadamard type involving an s-convex function with applications, Applied Mathematics and Computation, 246 (2014), 752-760.
- I.IÅŸcan, Hemite-Hadamard type inequalities for GA-s-convex functions, Le Matematiche, 69 (2014), 129-146.
- I.IÅŸcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe Journal of Mathematics and Statistics 43 (6) (2014), 935-942.
- I.IÅŸcan, Ostrowski type inequalities for harmonically s-convex functions, Konuralp Journal of Mathematics, 3 (2015), no. 1, 63-74.
- I.IÅŸcan, Hermite-Hadamard and Simpson-like type inequalities for differentiable harmonically convex functions, Journal of Mathematics, 2014 (2014), Article ID 346305.
- I.IÅŸcan and S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Applied Mathematica and Computation, 238 (2014), 237-244.
- A. P. Ji, T. Y. Zhang, F. Qi, Integral Inequalities of Hermite-Hadamard Type for (α,m)- GA-Convex Functions, Journal of Function Spaces and Applications, 2013 (2013), Article ID 823856.
- M. A. Latif, New Hermite-Hadamard type integral inequalities for GA-convex functions with applications, Analysis, 34 (2014), 379-389.
- M. V. Mihai, M. A. Noor, K. I. Noor and M. U. Awan, Some integral inequalities for harmonic h-convex functions involving hypergeometric functions, Applied Mathematics and Computa- tion 252 (2015), 257-262.
- M. A. Noor, K. I. Noor and M. U. Awana, Integral inequalities for coordinated harmonically convex functions, Complex Var. Elliptic Eqn. 60 (2015), 776-786.
- M. A. Noor, K. I. Noor, M. U. Awana and S. Costache, Some integral inequalities for har- monically h-convex functions, U.P.B Sci. Bull. Serai A. 77 (2015), 5-16.
- J. E. PeÄariÄ, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Mathe- matics in Science and Engineering, vol. 187, 1992.
- M. Z. Sarikaya, On new Hermite Hadamard Fejér type integral inequalities, Stud. Univ. BabeÅŸ-Bolyai Math. 57 (2012), no. 3, 377-386.
- Y. Shuang, H. P. Yin, F. Qi, Hermite-Hadamard type integral inequalities for geometric- arithmetically s-convex functions, Analysis 33 (2013), 1001-1010.