Chebyshev Rational Approximations for the Rosenau-KdV-RLW Equation on the Whole Line

Main Article Content

Mohammadreza Foroutan, Ali Ebadian

Abstract

In this paper, we consider the use of a modified Chebyshev rational approximations for the Rosenau-KdV-RLW equation on the whole line with initial-boundary values. It is shown that the proposed scheme leads to optimal error estimates. Furthermore, the stability and convergence of the proposed schemes are proved. The fully discrete Chebyshev pseudo-spectral scheme is constructed. Numerical results confirm well with the theoretical results. The idea and techniques presented in this paper will be useful to solve many other problems.

Article Details

References

  1. A. Biswas, Singular solitons, shock waves, and other solutions to potential KdV equation, Nonlinear Dyn. 58 (2009), 345-348.
  2. A. Biswas , Solitary waves for power-law regularized long-wave equation and R(m,n) equation, Nonlinear Dyn. 59 (2010), 423-426.
  3. A. Biswas, Solitary wave solution for the generalized KdV equation with time-dependent damping and dispersion, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 3503-3506.
  4. A. Biswas, H. Triki, M. Labidi, Bright and dark solitons of the RosenauKawahara equation with power law nonlinearity, Phys. Wave Phenom. 19 (2011), 24-29.
  5. J.P. Boyd, Chebyshev and Fourier spectral methods, Second ed., Dover, New York, 2000.
  6. J.P. Boyd, Orthogonal rational functions on a semi-infinite interval, J. Comput. Phys. 70 (1978), 63-88.
  7. J.P. Boyd, Spectral methods using rational basis functions on an infinite interval, J. Comput. Phys. 69 (1978), 112-142.
  8. C.I. Christov, A complete orthogonal system of functions in L 2 (-∞,∞) spaces, SIAM J. Appl. Math. 42 (1982), 1337- 1344.
  9. M. Dehghan, A.Shokri, A numerical method for KdV equation using collocation and radial basis functios, Nonlinear Dyn. 50 (2007), 111-120.
  10. D.Gottlieb, M.Y. Hussaini, S.Orszag, Theory and Applications of Spectral Methods in Spectral Methods for Partial Differential Equations edited by R. Voigt and D. Gottlieb and M.Y. Hussaini, SIAM, Philadelphia, 1984.
  11. B.Y. Guo, A class of difference schemes of two-dimensional viscous fluid flow, Acta Math. Sinica, 17 (1974), 242-258.
  12. B.Y. Guo, Error estimation of Hermite spectral method for nonlinear partial differential equations, Math. Comput. 68 (1999), 1067-1078.
  13. B.Y. Guo, Generalized stability of discretization and its applications to numerical solutions of nonlinear differential equations, Contemp. Math. 163 (1994), 33-54.
  14. B.Y. Guo, J.Shen, On spectral approximations using modified Legendre rational functions: Approximation to the Korteweg-ele vries equation on the half line, Indiana university Mathematics journal, 50 (2001), 181-204.
  15. B.Y. Guo, J. Shen, Z.Q. Wang, Chebyshev rational spectral and pseudospectral methods on a semi-infinite interval, Int. J. Numer. Meth. Engng. 53 (2002), 65-84.
  16. B.Y. Guo, J. Shen, Z.Q. Wang, A rational approximation and its applications to differential equations on the half line, Journal of scientific computing, 15 (2000), 117-148.
  17. B.Y. Guo, Z.Q. Wang, Modified Chebyshev rational spectral method for the whole line, Discrete Contin. Dyn. Syst. Supplement Volume (2003), 365-374.
  18. M.R. Foroutan, A. Ebadian, S.Najafzadeh, The use of generalized Laguerre functions for solving the equation of magnetohydydinamic flow due to a stretching cylinder , SeMA Journal 73(4) (2016), 335-346.
  19. S.U. Islam, S. Haq, A. Ali, A meshfree method for the numerical solution of the RLW equation, J. Comput. Appl. Math. 223 (2009), 997-1012.
  20. Z.Q. Lv, M. Xue, Y.S. Wang, A new multi-symplectic scheme for the KdV equation, Chin. Phys. Lett. 28 (2011), 060205.
  21. K. Parand, M. Dehghan, A.R. Rezaei, S.M. Ghaderi, An approximation algorithm for the solution of the nonlinear LaneEmden type equations arising in astrophysics using Hermite functions collocation method, Comput. Phys. Commun. 181 (2010), 1096-1108.
  22. K. Parand, A. Taghavi, Rational scaled generalized Laguerre function collocation method for solving the Blasius equation, J. Comput. Appl. Math. 233(4) (2009), 980-989.
  23. D.H. Peregrine, Calculations of the development of an undular bore, J. Fluid Mech. 25 (1966), 321-330.
  24. J.L. Ramos, Explicit finite difference methods for the EW and RLW equations, Appl. Math. Comput. 179(2) (2006), 622-638.
  25. P. Razborova, B. Ahmed, A. Biswas, Solitons, shock waves and conservation laws of Rosenau-KdV-RLW equation with power law nonlinearity, Appl.Math. Inf. Sci.8(2) (2014), 485-491.
  26. P. Razborova, L. Moraru, A. Biswas, Perturbation of dispersive shallow water waves with Rosenau-KdV-RLW equation and power law nonlinearity, Rom. J. Phys. 59(7-8) (2014), 658-676.
  27. P. Razborova, A.H. Kara, A. Biswas, Additional conservation laws for Rosenau-KdV-RLW equation with power law nonlinearity by lie symmetry, Nonlinear Dyn. 179 (2015), 743-748.
  28. P. Razborova, H. Triki, A. Biswas, Perturbation of dispersive shallow water waves, cean Eng. 63 (2013), 1-7.
  29. P. Rosenau, A quasi-continuous description of a nonlinear transmission line , Phys. Scr. 34 (1986), 827-829.
  30. P. Rosenau, Dynamics of dense discrete systems, Prog. Theor. Phys. 79 (1988), 1028-1042.
  31. P. Sanchez, G. Ebadi, A. Mojaver, M. Mirzazadeh, M.Eslami, A. Biswas, Solitons and other solutions to perturbed Rosenau-KdV-RLW equation with power law nonlinearity, Acta Phys. Pol. A, 127 (2015), 1577-1586.
  32. J. Shen, T. Tang, L.L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer, First edition 2010.
  33. T. Tajvidi, M. Razzaghi, M. Dehghan, Modified rational Legendre approach to laminar viscous flow over a semi-infinite, Caos, Solitons Fractals, 35 (2008), 59-66.
  34. Z.Q. Wang, B.Y. Guo, Modified Legendre rational spectral method for the whole line, J. Comput. Math. 22 (2004), 457-474.
  35. B. Wongsaijai, K. Poochinapan: A three-level average implicit finite difference scheme to solve equation obtained by coupling the Rosenau-KdV equation and the Rosenau-RLW equation. Appl. Math. Comput. 245 (2014), 289-304.
  36. Z.Q. Zhang, H.P. Ma, A rational spectral method for the KdV equation on the half line, J. Comput. Appl. Math. 230 (2009), 614-625.