On the Composition and Neutrix Composition of the Delta Function and the Function cosh^{-1}(|x|^{1/r}+1)
Main Article Content
Abstract
Let $F$ be a distribution in $\mathcal{D'}$ and let $f$ be a locally summable function. The composition $F(f(x))$ of $F$ and $f$ is said to exist and be equal to the distribution $h(x)$ if the limit of the sequence $\{ F_{n}(f(x))\}$ is equal to $h(x)$, where $F_n(x) =F(x)*\delta _n(x)$ for $n=1,2, \ldots$ and $\{\delta_n(x)\}$ is a certain regular sequence converging to the Dirac delta function. It is proved that the neutrix composition $ \delta^{(s)}[\cosh^{-1} (x_+^{1/r}+1)] $ exists and
\beqa \delta^{(s)}[\cosh^{-1} (x_+^{1/r}+1)] = - \sum _{k=0} ^{M-1} \sum_{i=0}^{kr+r} {k \choose i}{(-1)^{i+k}rc_{r,s,k} \over (kr+r)k!}\delta ^{(k)}(x),
for $s =M-1,M, M+1,\ldots$ and $r=1,2,\ldots,$ where
$$c_{r,s,k}=\sum _{j=0}^{i} {i \choose j}{ (-1)^{kr+r-i}(2j-i)^{s+1}\over 2^{s+i+1} },$$ $M$ is the smallest integer for which $s-2r+1 < 2Mr$ and $r\le s/(2M+2).$
Further results are also proved.
Article Details
References
- P. Antosik, Composition of Distributions, Technical Report no.9 University of Wisconsin, Milwaukee, (1988-89), pp.1-30.
- P. Antosik, J. Mikusinski and R. Sikorski, Theory of Distributions, The sequential Approach, PWN-Elsevier, Warszawa-Amsterdam (1973).
- J.G. van der Corput, Introduction to the neutrix calculus, J. Analyse Math., 7(1959), 291-398.
- B. Fisher, On defining the distribution δ (r) (f(x)), Rostock. Math. Kolloq., 23(1983), 73-80.
- B. Fisher, On defining the change of variable in distributions, Rostock. Math. Kolloq., 28(1985), 33-40.
- B. Fisher, The delta function and the composition of distributions, Dem. Math., 35(1)(2002), 117-123.
- B. Fisher, The composition and neutrix composition of distributions, in: Kenan Ta ¸ s et al. (Eds.), Mathematical Methods in Engineering, Springer, Dordrecht, 2007, pp. 59-69.
- B. Fisher and B. Jolevska-Tuneska, Two results on the composition of distributions, Thai. J. Math., 3(1)(2005), 17-26.
- B. Fisher and A. Kilicman, On the composition and neutrix composition of the delta function and powers of the inverse hyperbolic sine function, Integral Transforms Spec. Funct. 21(12)(2010), 935-944.
- H. Kleinert, A. Chervyakov, Rules for integrals over products of distributions from coordinate independence of path integrals, Eur. Phys. J. C Part. Fields 19(4)(2001), 743-747.
- B. Fisher, A. Kananthai, G. Sritanatana and K. Nonlaopon, The composition of the distributions $x_-^{ms}ln x_-$ and $x_+^{r-p/m}$, Integral Transforms Spec. Funct., 16(1)(2005), 13-20.
- B. Fisher and E. Ozcag, Some results on the neutrix composition of the delta function, Filomat, 26(6)(2012), 1247-1256.
- B. Fisher and K. Ta ¸ s, On the composition of the distributions $x^{-1}ln|x|$ and $x_+^r$, Integral Transforms Spec. Funct., 16(7)(2005), 533-543.
- S. Gasiorowics, Elementery Particle Physics, John Wiley and Sons, New York, 1966.
- I.M. Gel'fand and G.E. Shilov, Generalized Functions, Volume I, Academic Press, New York and London, 1st edition, 1964.
- D. S. Jones, Hadamard's Finite Part., Math. Methods Appl. Sci. 19(13)(1996), 1017-1052.
- E. L. Koh and C. K. Li, On distributions δ k and (δ 0 ) k , Math. Nachr., 157(1992), 243-248.
- H. Kou and B. Fisher, On Composition of Distributions, Publ. Math. Debrecen, 40(3-4)(1992), 279-290.
- L. Lazarova, B. Jolevska-Tuneska, I. Akturk and E. Ozcag Note on the Distribution Composition (x µ+) λ. Bull. Malaysian Math. Soc., (2016). doi:10.1007/s40840-016-0342-2.
- C. K. Li and C. Li, On defining the distributions δ k and (δ 0 ) k by fractional derivatives, Appl. Math. Compt., 246(2014), 502-513.
- E. Ozcag, Defining the k-th powers of the Dirac-delta distribution for negative integers, Appl. Math. Letters, 14(2001), 419-423.
- E. Ozcag, U. Gulen and B. Fisher, On the distribution $delta_+^k$, Integral Transforms Spec. Funct., 9(2000), 57-64.
- E. Ozcag, L. Lazarova and B. Jolevska-Tuneska, Defining Compositions of $x_+^mu, |x|^mu, x^{-s}$ and $x^{-s}ln |x|$ as Neutrix Limit of Regular Sequences, Commun. Math. Stat., 4(1)(2016), 63-80.
- G. Temple, The Theory of generalized Functions, Proc. Roy. Soc. ser. A 28(1955), 175-190.