Estimation of Different Entropies via Taylor One Point and Taylor Two Points Interpolations Using Jensen Type Functionals

Main Article Content

Tasadduq Niaz
Khuram Ali Khan
Dilda Pecaric
Josip Pecaric

Abstract

In this work, we estimated the different entropies like Shannon entropy, Renyi divergences, Csiszar divergence by using the Jensen's type functionals. The Zipf's mandelbrot law and hybrid Zipf's mandelbrot law are used to estimate the Shannon entropy. Further the Taylor one point and Taylor two points interpolations are used to generalize the new inequalities for m-convex function.

Article Details

References

  1. Anderson, G., & Ge, Y. The size distribution of Chinese cities. Reg. Sci. Urban Econ., 35 (2005), 756-776.
  2. Auerbach, F. (1913). Das Gesetz der Bevlkerungskonzentration. Petermanns Geographische Mitteilungen, 59 (2005), 74-76.
  3. Black, D., & Henderson, V. Urban evolution in the USA. J. Econ. Geogr., 3 (2003), 343-372.
  4. Bosker, M., Brakman, S., Garretsen, H., & Schramm, M. A century of shocks: the evolution of the German city size distribution 19251999. Reg. Sci. Urban Econ., 38 (2008), 330-347.
  5. Butt, S. I., Khan, K. A., & Pecaric, J. Generaliztion of Popoviciu inequality for higher order convex function via Tayor's polynomial, Acta Univ. Apulensis Math. Inform., 42 (2015), 181-200.
  6. Butt, S. I., Mehmood, N., & Pecaric, J. New generalizations of Popoviciu type inequalities via new green functions and Fink's identity. Trans. A. Razmadze Math. Inst., 171 (2017), 293-303.
  7. Butt, S. I., & Pecaric, J. Popoviciu's Inequality For N-convex Functions. Lap Lambert Academic Publishing, (2016).
  8. Butt, S. I., & Pecaric, J. Weighted Popoviciu type inequalities via generalized Montgomery identities. Rad Hazu. Mat. Znan., 19 (2015), 69-89.
  9. Butt, S. I., Khan, K. A., & Pecaric, J. Popoviciu type inequalities via Hermite's polynomial. Math. Inequal. Appl., 19 (2016), 1309-1318.
  10. Horvath, L. A method to refine the discrete Jensen's inequality for convex and mid-convex functions. Math. Computer Model., 54 (2011), 2451-2459.
  11. Horvath, L., Khan, K. A., & Pecaric, J. Combinatorial Improvements of Jensens Inequality / Classical and New Refinements of Jensens Inequality with Applications, Monographs in inequalities 8, Element, Zagreb. (2014).
  12. Horvath, L., Khan, K. A., & Pecaric, J. Refinement of Jensen's inequality for operator convex functions. Adv. Inequal. Appl., 2014 (2014), Art. ID 26.
  13. Horvath, L., Pecaric, J. A refinement of discrete Jensen's inequality, Math. Inequal. Appl. 14 (2011), 777-791.
  14. Ioannides, Y. M., & Overman, H. G. Zipf's law for cities: an empirical examination. Reg. Sci. Urban Econ., 33 (2003), 127-137.
  15. Csiszar, I. Information measures: a critical survey. In: Tans. 7th Prague Conf. on Info. Th., Statist. Decis. Funct., Rand. Proc. 8th Eur. Meeting Stat., Vol. B (1978), 73-86.
  16. Csiszar. I. . Information-type measures of difference of probability distributions and indirect observations. Stud. Sci. Math. Hungar. 2 (1967), 299-318.
  17. Horvath, L., Pecaric, D. & Pecaric, J. Estimations of f-and Renyi divergences by using a cyclic refinement of the Jensen's inequality. Bull. Malaysian Math. Sci. Soc., 42 (2019). 933-946 .
  18. Khan, K. A., Niaz, T., Pecaric, ¯D., Pecaric, J. Refinement of Jensen's Inequality and Estimation of f- and Renyi Divergence via Montgomery identity. J. Inequal. Appl., 2018 (2018), Art. ID 318.
  19. Kullback, S. Information theory and statistics. Courier Corporation.
  20. Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Anna. Math. Stat., 22 (1997), 79-86. Math. Dokl. 4(1963), 121-124.
  21. Lovricevic, N., Pecaric, D. & Pecaric, J. ZipfMandelbrot law, f-divergences and the Jensen-type interpolating inequalities. J. Inequal. Appl., 2018 (2018), Art. ID 36.
  22. Matic, M., Pearce, C. E., & Pecaric, J. Shannon's and related inequalities in information theory. In Survey on Classical Inequalities (pp. 127-164). Springer, Dordrecht. (2000).
  23. Niaz, T., Khan, K. A., & Pecaric, J. On generalization of refinement of Jensen's inequality using Fink's identity and Abel-Gontscharoff Green function. J. Inequal. Appl., 2017 (2017), Art. ID 254.
  24. Pecaric, J., Proschan, F., & Tong, Y. L. Convex functions, Partial Orderings and Statistical Applications, Academic Press, New York. (1992).
  25. Renyi, A. On measure of information and entropy. In: Proceeding of the Fourth Berkely Symposium on Mathematics, Statistics and Probability, pp. 547-561. (1960).
  26. Rosen, K. T., & Resnick, M. The size distribution of cities: an examination of the Pareto law and primacy. J. Urban Econ., 8 (1980), 165-186.
  27. Soo, K. T. Zipf's Law for cities: a cross-country investigation. Reg. Sci. Urban Econ., 35 (2005), 239-263.
  28. Zipf, G. K. Human behaviour and the principle of least-effort. Cambridge MA edn. Reading: Addison-Wesley. (1949).